Skip to main content
Log in

Monitoring Pb in Aqueous Samples by Using Low Density Solvent on Air-Assisted Dispersive Liquid–Liquid Microextraction Coupled with UV–Vis Spectrophotometry

  • Published:
Bulletin of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

In this study, AA-DLLME combined with UV–Vis spectrophotometry was developed for pre-concentration, microextraction and determination of lead in aqueous samples. Optimization of the independent variables was carried out according to chemometric methods in three steps. According to the screening and optimization study, 86 μL of 1-undecanol (extracting solvent), 12 times syringe pumps, pH 2.0, 0.00% of salt and 0.1% DDTP (chelating agent) were chosen as the optimum independent variables for microextraction and determination of lead. Under the optimized conditions, R = 0.9994, and linearity range was 0.01–100 µg mL−1. LOD and LOQ were 3.4 and 11.6 ng mL−1, respectively. The method was applied for analysis of real water samples, such as tap, mineral, river and waste water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

LLE:

Liquid–liquid extraction

SPE:

Solid phase extraction

SPME:

Solid-phase microextraction

LPME:

Liquid-phase microextraction

DLLME:

Dispersive liquid–liquid microextraction

AA-LLME:

Air-assisted liquid–liquid microextraction

SFODME:

Solidification of floating organic drop

DDTP:

O, O-diethyl dithiophosphoric acid

ANOVA:

Analysis of variance

FFD:

Fractional factorial design

CCD:

Central composite design

LSD:

Least significant difference test

LOF:

Lack-of-fit

p:

Probability value

RSM:

Response surface method

IUPAC:

International union of pure and applied chemistry

LOD:

Limit of detection

LOQ:

Limit of quantitation

RSD:

Relative standard deviation

texp :

t-value experiments

Rexp :

Recovery experiments

CI:

Confidence interval

N:

Number of experiments

References

  • Abadi MDM, Ashraf N, Chamsaz M, Shemirani F (2012) An overview of liquid phase microextraction approaches combined with UV–Vis spectrophotometry. Talanta 99:1–12. doi:10.1016/j.talanta.2012.05.027

    Article  CAS  Google Scholar 

  • Andruch V, Balogh IS, Kocúrová L, Šandrejová J (2013) Five years of dispersive liquid–liquid microextraction. Appl Spectrosc Rev 48:161–259. doi:10.1080/05704928.2012.697087

    Article  CAS  Google Scholar 

  • Berton P, Lana NB, Ríos JM, García-Reyes JF, Altamirano JC (2016) State of the art of environmentally friendly sample preparation approaches for determination of PBDEs and metabolites in environmental and biological samples: a critical review. Anal Chim Acta 905:24–41. doi:10.1016/j.aca.2015.11.009

    Article  CAS  Google Scholar 

  • Botello I, Borrull F, Calull M, Aguilar C (2011) Simultaneous determination of weakly ionizable analytes in urine and plasma samples by transient pseudo-isotachophoresis in capillary zone electrophoresis. Anal Bioanal Chem 400:527–534. doi:10.1007/s00216-011-4758-0

    Article  CAS  Google Scholar 

  • Bulatov A, Medinskaia K, Aseeva D, Garmonov S, Moskvin L (2015) Determination of antipyrine in saliva using the dispersive liquid–liquid microextraction based on a stepwise injection system. Talanta 133:66–70. doi:10.1016/j.talanta.2014.05.064

    Article  CAS  Google Scholar 

  • Chen H, Chena R, Li S (2010) Low-density extraction solvent-based solvent terminated dispersive liquid–liquid microextraction combined with gas chromatography-tandem mass spectrometry for the determination of carbamate pesticides in water samples. J Chromatogr A 1217:1244–1248. doi:10.1016/j.chroma.2009.12.062

    Article  CAS  Google Scholar 

  • Faraji H, Feizbakhsh AR, Helalizadeh M (2013) Modified dispersive liquid–liquid microextraction for pre-concentration of benzene, toluene, ethylbenzene and xylenes prior to their determination by GC. Microchim Acta 180:1141–1148. doi:10.1007/s00604-013-1037-0

    Article  CAS  Google Scholar 

  • Farajzadeh MA, Afshar Mogaddam MR (2012) Air-assisted liquid–liquid microextraction method as a novel microextraction technique; application in extraction and preconcentration of phthalate esters in aqueous sample followed by gas chromatography–flame ionization detection. Anal Chim Acta 728:31–38. doi:10.1016/j.aca.2012.03.031

    Article  CAS  Google Scholar 

  • IUPAC (2002) Harmonized guidelines for single-laboratory validation of method of analyses (IUPAC technical report). Pure Appl Chem 74:835. doi:10.1351/pac200274050835

    Google Scholar 

  • Kataoka H (2003) New trends in sample preparation for clinical and pharmaceutical analysis. TrAC-Trends Anal Chem 22:232–244. doi:10.1016/s0165-9936(03)00402-3

    Article  CAS  Google Scholar 

  • Marube LC, Caldas SS, Soares KL, Primel EG (2015) Dispersive liquid–liquid microextraction with solidification of floating organic droplets for simultaneous extraction of pesticides, pharmaceuticals and personal care products. Microchim Acta 182:1765–1774. doi:10.1007/s00604-015-1507-7

    Article  CAS  Google Scholar 

  • Niazi A, Khorshidi N, Ghaemmaghami P (2015) Microwave-assisted of dispersive liquid–liquid microextraction and spectrophotometric determination of uranium after optimization based on Box-Behnken design and chemometrics methods. Spectrochim Acta A 135:69–75. doi:10.1016/j.saa.2014.06.148

    Article  CAS  Google Scholar 

  • Ocaña-González JA, Fernández-Torres R, Bello-López MA, Ramos-Payán (2016) New developments in microextraction techniques in bioanalysis. A review. Anal Chim Acta 905:8–23. doi:10.1016/j.aca.2015.10.041

    Article  Google Scholar 

  • Olivieri AC (2015) Practical guidelines for reporting results in single- and multi-component analytical calibration: a tutorial. Anal Chim Acta 868:10–22. doi:10.1016/j.aca.2015.01.017

    Article  CAS  Google Scholar 

  • Ravelo-Pérez LM, Hernández-Borges J, Asensio-Ramos M, Rodríguez-Delgado MA (2009) Ionic liquid based dispersive liquid–liquid microextraction for the extraction of pesticides from bananas. J Chromatogr A 1216:7336–7345. doi:10.1016/j.chroma.2009.08.012

    Article  Google Scholar 

  • Rezaee M, Assadi Y, Milani Hosseini MR, Aghaee E, Ahmadi F, Berijani S (2006) Determination of organic compounds in water using dispersive liquid–liquid microextraction. J Chromatogr A 1116:1–9. doi:10.1016/j.chroma.2006.03.007

    Article  CAS  Google Scholar 

  • Ridgway K, Lalljie SPD, Smith RM (2007) Sample preparation techniques for the determination of trace residues and contaminants in foods. J Chromatogr A 1153:36–53. doi:10.1016/j.chroma.2007.01.134

    Article  CAS  Google Scholar 

  • Shah VP, Midha KK, Dighe S, McGilveray IJ et al (1992) Analytical methods validation: bioavailability, bioequivalence, and pharmacokinetic studies. Int J Pharm 82:1–7. doi:10.1016/0378-5173(92)90065-a

    Article  Google Scholar 

  • Yiantzi E, Psillakis E, Tyrovola K, Kalogerakis N (2010) Vortex-assisted liquid–liquid microextraction of octylphenol, nonylphenol and bisphenol-A. Talanta 80:2057–2062. doi:10.1016/j.talanta.2009.11.005

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hakim Faraji.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nejad, M.G., Faraji, H. & Moghimi, A. Monitoring Pb in Aqueous Samples by Using Low Density Solvent on Air-Assisted Dispersive Liquid–Liquid Microextraction Coupled with UV–Vis Spectrophotometry. Bull Environ Contam Toxicol 98, 546–555 (2017). https://doi.org/10.1007/s00128-016-2010-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00128-016-2010-5

Keywords

Navigation