Skip to main content
Log in

The Origin of Hexavalent Chromium as a Critical Parameter for Remediation of Contaminated Aquifers

  • Published:
Bulletin of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

Two different cases of Cr(VI) contaminated ophiolitic aquifers are presented herein. The first is located at Vergina (Northern Greece), where the maximum Cr(VI) concentration measured was 64 μg/L, being one of the highest geogenic concentrations recorded globally in areas with similar geological background. The second case is located at Inofyta (Central Greece), a makeshift industrial area, where the maximum detected Cr(VI) concentration exceeds 10,000 μg/L, indicating clearly anthropogenic activities as the main source. Although for the Vergina aquifer, area-wide institutional measures and in some cases pump and treat systems might be sufficient to ensure a safe water supply for domestic and agricultural use, this is not the case for the contaminated aquifer of Inofyta. There a comprehensive remediation scheme should be properly implemented adopting, however, realistic remediation targets, that should also take into account the geogenic contribution to the high Cr(VI) groundwater concentrations measured.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ball J, Izbicki JA (2004) Occurrence of hexavalent chromium in ground water in thewestern Mojave Desert, California. Appl Geochem 19:1123–1135

    Article  CAS  Google Scholar 

  • Becquer T, Quantin C, Sicot M, Boudot JP (2003) Chromium availability in ultramaficsoils from New Caledonia. Sci Total Environ 301:251–261

    Article  CAS  Google Scholar 

  • Brooks RR (1987) Serpentine and its vegetation. Dioscorides, Portland

    Google Scholar 

  • Chrysochoou M, Theologou E, Bompoti N, Dermatas D, Panagiotakis I (2016) Occurrence, origin and transformation processes of geogenic chromium in soils and sediments. Curr Pollut Rep 2:224–235

    Article  Google Scholar 

  • Coleman RG, Jove C (1992) Geological origin of serpentinites. In: Baker AJM, Proctor J, Reeves RD (eds) The vegetation of ultramafic (serpentine) soils. Intercept, Andover, pp 1–17

    Google Scholar 

  • Dermatas D, Mpouras T, Chrysochoou M, Panagiotakis I, Vatseris C, Linardos N, Theologou E, Boboti N, Xenidis A, Papassiopi N, Sakellariou L (2015) Origin and concentration profile of chromium in a Greek aquifer. J Hazard Mater 281:35–46

    Article  CAS  Google Scholar 

  • Dokou Z, Karatzas GP, Panagiotakis I, Dermatas D (2016) Groundwater modeling and remediation scenarios of a hexavalent chromium plume released from an industrial site. Bull Environ Contam Toxicol. doi:10.1007/s00128-016-1951-z

    Google Scholar 

  • Fantoni D, Brozzo G, Canepa M, Cipolli F, Marini L, Ottonello G, Zuccolini MV (2002) Natural hexavalent chromium in groundwaters interacting with ophiolitic rocks. Environ Geol 42:871–882

    Article  CAS  Google Scholar 

  • Fruchter J (2002) In situ treatment of chromium-contaminated groundwater. Environ Sci Tech 36:464–472

    Article  Google Scholar 

  • Gonzalez AR, Ndungu K, Flegal AR (2005) Natural occurrence of hexavalent chromium in the aromas red sands Aquifer, California. Environ Sci Technol 39:5505–5511

    Article  CAS  Google Scholar 

  • Izbicki JA, Ball JW, Bullen TD, Sutley SJ (2008) Chromium isotopes and selected trace elements, western Mojave Desert, USA. Appl Geochem 23:1325–1352

    Article  CAS  Google Scholar 

  • Mamais D, Dermatas D, Noutsopoulos C, Gavalaki E, Tzimas A, Spyropoulou S (2014) Determination of TV for total chromium and hexavalent chromium at the Asopos groundwater system (deliverable 4.8–1) (http://www.charm-life.gr/charm/index.php/en/documents)

  • Margiotta S, Mongelli G, Summa V, Paternoster M, Fiore S (2012) Trace element distribution and Cr(VI) speciation in Ca-HCO3 and Mg-HCO3 spring waters from the northern sector of the Pollino massif, southern Italy. J Geochem Explor 115:1–12

    Article  CAS  Google Scholar 

  • Megremi I (2010) Distribution and bioavailability of Cr in central Euboea, Greece. Cent Eur J Geosci 2:103–123

    Google Scholar 

  • Moraetis D, Nikolaidis NP, Karatzas GP, Dokou Z, Kalogerakis N, Winkel L, Palaiogianni-Bellou A (2012) Origin and mobility of hexavalent chromium in North-Eastern Attica, Greece. Appl Geochem 27:1170–1178

    Article  CAS  Google Scholar 

  • Panagiotakis I, Dermatas D, Vatseris C, Chrysochoou M, Papassiopi N, Xenidis A, Vaxevanidou K (2015) Forensic investigation of a chromium(VI) groundwater plume in Thiva, Greece. J Hazard Mater 281:27–34

    Article  CAS  Google Scholar 

  • Papanikolaou D (2009) Timing of tectonic emplacement of the ophiolites and terranepaleogeography in the Hellenides. Lithos 108:262–280

    Article  CAS  Google Scholar 

  • Robles-Camacho J, Armienta MA (2000) Natural chromium contamination of groundwater at León Valley, México. J Geochem Explor 68:167–181

    Article  CAS  Google Scholar 

  • Saha R, Nandi R, Saha B (2011) Sources and toxicity of hexavalent chromium. J Coord Chem 64:1782–1806

    Article  CAS  Google Scholar 

  • Saputro S, Yoshimura K, Matsuoka S, Takehara K, Narsito, Aizawa J, Tennichi Y (2014) Speciation of dissolved chromium and the mechanisms controlling its concentration in natural water. Chem Geol 364:33–41

    Article  CAS  Google Scholar 

  • Tziritis E, Kelepertzis E, Korres G, Perivolaris D, Repani S (2012) Hexavalent chromium contamination in groundwaters of Thiva basin, Central Greece. Bull Environ Contam Toxicol 89:1073–1077

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the LIFE + CHARM project (LIFE10 ENV/GR/000601). Authors appreciate the contribution of Prefecture of Viotia and the Special Secretariat for the Environment and Energy Inspectorate for their valuable help in detection of the contaminated site.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thanasis Mpouras.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dermatas, D., Panagiotakis, I., Mpouras, T. et al. The Origin of Hexavalent Chromium as a Critical Parameter for Remediation of Contaminated Aquifers. Bull Environ Contam Toxicol 98, 331–337 (2017). https://doi.org/10.1007/s00128-016-1985-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00128-016-1985-2

Keywords

Navigation