Skip to main content
Log in

An Overview of Persistence of Spinosad in Biotic and Abiotic Components of the Environment and Advances in Its Estimation Techniques

  • Published:
Bulletin of Environmental Contamination and Toxicology Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  • Anonymous (2006) FAO specifications and evaluations for agricultural pesticides. (http://www.fao.org/ag/AGP/AGPP/Pesticid/Specs/docs/Pdf/new/Spinosad08.pdf). Accessed on 29 Sept 2012

  • Anonymous (2010) Directive 98/8/EC concerning the placing biocidal products on the market. Spinosad, Product-type 18 (insecticides, acaricides and products to control other arthropods). Accessed on 29 Sept 2012

  • Bret BL, Larson L, Schoonover J, Sparks TC, Thompson GD (1997) Biological properties of Spinosad. Down to Earth 52:6–13

    Google Scholar 

  • Cisneros J, Goulson D, Derwent LC, Penagos DI, Hernandez O, Williams T (2002) Toxic effects of spinosad on predatory insects. Biol Cont 23:156–163

    Article  CAS  Google Scholar 

  • Cleveland CB, Mayes MA, Cryer SA (2001) An ecological risk assessment for spinosad use on cotton. Pest Manag Sci 58:70–84

    Article  Google Scholar 

  • Cleveland CB, Bormett GA, Saunders DG, Powers FL, McGibbon AS, Reeves GL, Rutherford L, Balopr JL (2002) Environmental fate of spinosad. 1. Dissipation and degradation in Aqueous Systems. J Agric Food Chem 50:3244–3256

    Article  CAS  Google Scholar 

  • Daglish GJ, Nayak MK (2006) Long-term persistence and efficacy of spinosad against Rhyzopertha dominica (Coleoptera: Bostrychidae) in wheat. Pest Manag Sci 62:148–152

    Article  CAS  Google Scholar 

  • Elzen GW, Elzen PJ, King EG (1998) Laboratory toxicity of insecticide residues to Orius insidiosus, Geocoris punctipes, Hippoclamia convergens and Chyrosoperla carnea. Southwest Entomol 23:335–342

    CAS  Google Scholar 

  • Hale KA, Portwood DE (1996) The aerobic soil degradation of spinosad—a novel natural insect control agent. J Environ Sci Health, Part B 31:477–484

    Article  Google Scholar 

  • Kirst HA, Michel KH, Mynderse JS, Chao EH, Yao RC, Nakatsukasa WM, Boeck LD, Occlowitz J, Paschel JW, Deeter JB, Thompson GD (1992) Discovery, isolation and structure elucidation of a family of structurally unique fermentation-derived tetracyclic macrolides. Synthesis and Chemistry of Agrochemicals ΙΙΙ. Am Chem Soc 214–225

  • Lehotay SJ, Kok AD, Hiemstra M, Bodegraven PV (2005) Validation of a fast and easy method for the determination of residues from 229 pesticides in fruits and vegetables using gas liquid chromatography and mass spectrometric detection. J AOAC Int 88:595–614

    CAS  Google Scholar 

  • Mandal K, Jyot G, Singh B (2009) Dissipation kinetics of spinosad on cauliflower (Brassica oleracea var. botrytis. L.) under subtropical conditions of Punjab, India. Bull Environ Contam Toxicol 83:808–811

    Article  CAS  Google Scholar 

  • Rutherford BS, Gardner RC, West SD, Robb CK, Dolder SC (2000) residues of spinosad in meat, milk and eggs. J Agric Food Chem 48:4428–4431

    Article  CAS  Google Scholar 

  • Salgado VL (1997) The modes of action of spinosad and other insect control products. Down to Earth 52:35–43

    Google Scholar 

  • Schwedler DA, Thomas AD, Yeh LT (2000) Determination of spinosad and its metabolites in food and environmental matrices. 2. Liquid chromatography-mass spectrometry. J Agric Food Chem 48:5138–5145

    Article  CAS  Google Scholar 

  • Sharma A, Srivastava A, Ram B, Srivastava PC (2007) Dissipation behaviour of spinosad insectcide in soil, cabbage and cauliflower under subtropical conditions. Pest Manag Sci 63:1141–1145

    Article  CAS  Google Scholar 

  • Sharma A, Srivastava A, Ram B, Srivastava PC (2008) Dissipation Behaviour of Spinosad Insecticide in Chilli and Soil. Asian J Water Environ Pollut 5:49–52

    Google Scholar 

  • Singh S, Battu RS (2012) Dissipation kinetics of spinosad in cabbage (Brassica oleracea L.var. capitata). Toxicol Environ Chem 94:319–326

    Article  CAS  Google Scholar 

  • Subramanyam B, Toews MD, Ileleji KE, Maier DE, Thompson GD, Pitts TJ (2007) Evaluation of spinosad as a grain protectant on three Kansas farms. Crop Protec 26:1021–1030

    Article  CAS  Google Scholar 

  • Thompson G, Hutchins S (1999) Spinosad. Pest Outlook 10:78–81

    CAS  Google Scholar 

  • Thompson DG, Harris BJ, Buscarini TM, Chartrand DT (2002) Fate of spinosad in litter and soils of a white spruce plantation in central Ontario. Pest Manag Sci 58:397–404

    Article  CAS  Google Scholar 

  • Tomkins AR, Holland PT, Thomson C, Willson DJ, Malcolm CP (1999) Residual life of spinosad on kiwifruit—biological and chemical studies. Proceedings 52nd New Zealand Plant Protection Conf pp 94–97

  • Ueno E, Oshima H, Matsumoto H, Saito I, Tamura H (2006) Determination of spinosad in vegetables and fruits by high-performance liquid chromatography with UV and mass spectrometric detection after gel permeation chromatography and solid-phase extraction cleanup on a 2-layered column. J AOAC Int 89:1641–1649

    CAS  Google Scholar 

  • West SD (1996) Determination of the naturally derived insect control agent spinosad in cottonseed and processed commodities by high-performance liquid chromatography with ultraviolet detection. J Agric Food Chem 44:3170–3177

    Article  CAS  Google Scholar 

  • West SD (1997) Determination of the naturally derived insect control agent spinosad and its metabolites in soil, sediment, and water by HPLC with UV Detection. J Agric Food Chem 45:3107–3113

    Article  CAS  Google Scholar 

  • West SD, Turner LG (1998) Determination of spinosad and its metabolites in meat, milk, cream, and eggs by high-performance liquid chromatography with ultraviolet detection. J Agric Food Chem 46:4620–4627

    Article  CAS  Google Scholar 

  • West SD, Yeh LT, Turner LG, Schwedler DA, Thomas AD, Duebelbeis DO (2000) Determination of spinosad and its metabolites in food and environmental matrices. 1. High-performance liquid chromatography with ultraviolet detection. J Agric Food Chem 48:5131–5137

    Article  CAS  Google Scholar 

  • Yeh LT, Schwedler DA, Schelle GE, Balcer JL (1997) Application of Empore disk extraction for trace analysis of spinosad and its metabolites in leafy vegetables, peppers, and tomatoes by high-performance liquid chromatography with ultraviolet detection. J Agric Food Chem 45:1751–1764

    Article  Google Scholar 

  • Young DL, Mihaliak CA, West SD, Hanselman KA, Collins RA, Phillips AM, Robb CK (2000) Determination of spinosad and its metabolites in food and environmental matrices. 3 Immunoassay methods. J Agric Food Chem 48:5146–5153

    Article  CAS  Google Scholar 

  • Zhao E, Xu Y, Dong M, Jiang S, Zhou Z, Han L (2007) Dissipation and residues of spinosad in eggplant and soil. Bull Environ Contam Toxicol 78:222–225

    Article  CAS  Google Scholar 

  • Zywitz D, Anastassiades M, Scherbaum E (2004) Simultaneous determination of macrocyclic lactone insecticides in fruits and vegetables using LC-MS/MS. Dtsch Lebensm-Rundsch 100:140–150

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kousik Mandal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mandal, K., Singh, S., Battu, R.S. et al. An Overview of Persistence of Spinosad in Biotic and Abiotic Components of the Environment and Advances in Its Estimation Techniques. Bull Environ Contam Toxicol 90, 405–413 (2013). https://doi.org/10.1007/s00128-012-0913-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00128-012-0913-3

Keywords

Navigation