Skip to main content

Advertisement

Log in

Survival, Growth, and Body Residues of Hyalella azteca (Saussure) Exposed to Fipronil Contaminated Sediments from Non-Vegetated and Vegetated Microcosms

  • Published:
Bulletin of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

We assessed chronic effects of fipronil and metabolite contaminated sediments from non-vegetated and Thallia dealbata vegetated wetland microcosms on Hyalella azteca during wet and dry exposures. Mean sediment concentrations (ng g−1) ranged from 0.72–1.26, 0.01–0.69, 0.07–0.23, and 0.49–7.87 for fipronil, fipronil-sulfide, fipronil-sulfone, and fipronil-desulfinyl, respectively. No significant differences in animal survival or growth were observed between non-vegetated and vegetated microcosms during wet or dry exposures. Mean animal body residue concentrations (ng g−1) ranged from 28.4–77.6, 0–30.7, and 8.3–43.8 for fipronil, fipronil-sulfide, and fipronil-sulfone. Fipronil-desulfinyl was not detected in any animal samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • American Public Health Association (APHA) (1998) Standard methods for the examination of water and wastewater, 20th edn. American Public Health Association, Washington, DC

    Google Scholar 

  • Bennett ER, Moore MT, Cooper CM, Smith S (2000) Method for the simultaneous extraction and analysis of two current use pesticides, atrazine and lambda-cyhalothrin, in sediment and aquatic plants. Bull Environ Contam Toxicol 64:825–833. doi:10.1007/s001280000077

    Article  CAS  Google Scholar 

  • Biever RC, Hoberg JR, Jacobsen B, Dionne E, Sulaiman M, McCahon P (2003) ICON® rice seed treatment toxicity to crayfish (Procambarus clarkii) in experimental rice paddies. Environ Toxicol Chem 22:167–174. doi:10.1897/1551-5028(2003)022<0167:IRSTTT>2.0.CO;2

    Article  CAS  Google Scholar 

  • Chaton PF, Ravanel P, Tissut M, Meyran JC (2002) Toxicity and bioaccumulation of fipronil in the nontarget arthropodan fauna associated with subalpine mosquito breeding sites. Ecotox Environ Saf 52:8–12. doi:10.1006/eesa.2002.2166

    Article  CAS  Google Scholar 

  • Deaver E, Rodgers JH Jr (1996) Measuring bioavailable copper using anodic stripping voltammetry. Environ Toxicol Chem 15:1925–1930. doi:10.1897/1551-5028(1996)015<1925:MBCUAS>2.3.CO;2

    Article  CAS  Google Scholar 

  • de March BGE (1981) Hyalella azteca (Saussure). In: Lawrence SG (ed) Manual for the culture of selected freshwater invertebrates. Can Spec Publ Fish Aquat Sci 54:61–77

  • Gunasekara AS, Truong T, Goh KS, Spurlock F, Tjeerdema RS (2007) Environmental fate and toxicology of fipronil. J Pest Sci 32:189–199. doi:10.1584/jpestics.R07-02

    Article  CAS  Google Scholar 

  • Knight SS, Lizotte RE Jr, Smith S Jr, Bryant CT (2007) Distribution and spatial variation in surface sediment pesticides of Mississippi alluvial plain. J Int Environmental Application & Science 2:40–50

    CAS  Google Scholar 

  • Kröger R, Moore MT (2008) Utilization of common ditch vegetation in the reduction of fipronil and its sulfone metabolite. Pest Manag Sci. doi:10.1002/ps.1619

  • Lin K, Haver D, Oki L, Gan J (2008) Transformation and sorption of fipronil in urban stream sediments. J Agric Food Chem. doi:10.1021/jf8018886

  • Maul JD, Brennan AA, Harwood AD, Lydy MJ (2008) Effect of sediment associated pyrethroids, fipronil, and metabolites on Chironomus tentans growth rate, body mass, condition index, immobilization, and survival. Environ Toxicol Chem. doi:10.1897/08-185.1

  • Smith S, Lizotte RE, Knight SS (2007) Pesticide body residues of Hyalella azteca exposed to Mississippi delta sediments. Bull Environ Contam Toxicol 78:26–29. doi:10.1007/s00128-007-9020-2

    Article  Google Scholar 

  • Statistical Package for the Social Sciences (SPSS), Inc. (1997) SigmaStat for windows version 2.03. SPSS, Chicago

    Google Scholar 

  • US Department of Agriculture (USDA) National Agricultural Statistical Service (NASS) (2008) Agricultural chemical use database. http://www.pestmanagment.info/nass/

  • US Environmental Protection Agency (USEPA) (1994) Methods for measuring the toxicity and bioaccumulation of sediment-associated contaminants with freshwater invertebrates. EPA 600/R-94/024. US Environmental Protection Agency, Washington, DC

    Google Scholar 

Download references

Acknowledgments

Appreciation is extended to J. Renee Russell, Lisa Brooks, Dan McChesney, and Sam Testa for sample collection and analytical assistance. Mention of equipment, software or a pesticide does not constitute an endorsement for use by the US Department of Agriculture nor does it imply pesticide registration under FIFRA as amended. All programs and services of the USDA are offered on a nondiscriminatory basis without regard to race, color, national origin, religion, sex, marital status, or handicap.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Kröger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kröger, R., Lizotte, R.E. & Moore, M.T. Survival, Growth, and Body Residues of Hyalella azteca (Saussure) Exposed to Fipronil Contaminated Sediments from Non-Vegetated and Vegetated Microcosms. Bull Environ Contam Toxicol 83, 369–373 (2009). https://doi.org/10.1007/s00128-009-9759-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00128-009-9759-8

Keywords

Navigation