Skip to main content

Advertisement

Log in

Association of gold with uraninite and pyrobitumen in the metavolcanic rock hosted hydrothermal Au-U mineralisation at Rompas, Peräpohja Schist Belt, northern Finland

  • Article
  • Published:
Mineralium Deposita Aims and scope Submit manuscript

Abstract

The Peräpohja Schist Belt comprises a supracrustal sequence of quartzites, mafic volcanics and volcaniclastics, carbonate rocks, black shales, mica schists and greywackes which were deposited from ca. 2.44 to ~1.91 Ga, during the rifting of the Archaean basement in the eastern part of the Fennoscandian shield. Metamorphism and multiple folding of the basin fill took place during the Svecofennian orogeny (1.9–1.8 Ga) followed by intrusions of late-orogenic (1.84–1.80 Ga) and post-orogenic granitoids (1.79–1.76 Ga). The Rompas Au-U mineralisation is hosted by deformed calcsilicate veins in mafic volcanic rocks and locally contains very high grade (>10,000 g/t Au) gold pockets with strict spatial association of gold minerals to uraninite and pyrobitumen. Chemical ages from the unaltered domains in the structure of uraninite indicate a 1.95–1.90 Ga age for the deposition of the primary, high temperature (e.g. U/Th < 100 in uraninite) hydrothermal uranium mineralisation. These data are in agreement with the results of previous U-Pb dating of uraninite by SIMS. Textural evidence suggests that metamorphic recrystallisation of the uraninite-bearing quartz-dolomite veins into calcsilicate mineral assemblages during the Svecofennian orogeny (1.9–1.8 Ga) was followed by a hydrocarbon-bearing fluid flow event and radiolytic polymerisation of hydrocarbons around grains of uraninite. Gold precipitated during a subsequent hydrothermal process in the fractures of uraninite, as well as in the cracks and on the botryoidal surfaces of uraninite-pyrobitumen nodules. Remobilisation and redeposition of uranium by these hydrothermal events produced secondary uraninite grains with chemical ages between 1.85 and 1.65 Ga. Native gold is associated with galena, altaite, hunchunite, nickeline and rare cobaltite, Pb-bearing maldonite, pyrite, pyrrhotite, chalcopyrite, molybdenite and titanite. Raman spectra show disordered structure of undeformed pyrobitumen nodules in contrast with the well-ordered graphite in calcsilicate veins. Mean random reflectance data for pyrobitumen indicate 270–340 °C maximum temperature of thermal maturation—this temperature range is also considered as the temperature of gold deposition. Results of multiple sulphur isotope analyses of organic material-, pyrite- and acid-volatile-bound sulphur show distinct ranges of δ34S values for SORG and SCRS in uraninite-pyrobitumen (from −6.99 to −3.55‰ and from −10.02 to −4.41‰, respectively) and uraninite-pyrobitumen-native gold mineral associations (from +1.36 to +6.87‰ and from +0.42 to +9.7‰, respectively). Δ33S data indicate local occurrence of nonmass-dependent sulphur isotope fractionation owing to interaction of fluids with organic material. Concentration of lead in uraninite is depleted along the gold mineral filled fractures whereas the uranogenic lead isotope contents of galena, altaite and hunchuite deposited in the same fractures are extremely high, suggesting that the dominant source of lead for the crystallisation of these minerals was the radiogenic lead content of uraninite. Taking into account this source of radiogenic lead, the calculated Pb-Pb model ages for the lead minerals are between 1.75 and 1.70 Ga. Sulphur and tellurium removal from the fluid by reaction with radiogenic lead released by uraninite appears to be an important mechanism in the strongly localised deposition of gold minerals. Scavenging of sulphur by pyrobitumen nodules from gold transporting fluids was an additional process triggering precipitation of gold. Carbon particles and organic functional groups in pyrobitumen probably acted as nucleation and adsorption centres for gold minerals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Abedini A, Daud AR, Hamid MAA, Othman NK, Saion E (2013) A review on radiation-induced nucleation and growth of colloidal metallic nanoparticles. Nanoscale Res Lett 8:474

    Article  Google Scholar 

  • Affifi AM, Kelly WC, Essene EJ (1988a) Phase relations among tellurides, sulfides, and oxides: I. Thermochemical data and calculated equilibria. Econ Geol 83:377–394

  • Affifi AM, Kelly WC, Essene EJ (1988b) Phase relations among tellurides, sulfides, and oxides: II. Applications to telluride-bearing ore deposits. Econ Geol 83:377–394

  • Alexandre P, Kyser TK (2005) Effects of cationic substitutions and alteration in uraninite, and implications for the dating of uranium deposits. Can Mineral 43:1005–1017

    Article  Google Scholar 

  • Amrani A, Aizenshtat Z (2004) Mechanism of sulfur introduction chemically controlled: δ34S imprint. Org Geochem 35:1319–1336

  • Amrani A, Deev A, Sessions AL, Tang Y, Adkins JF, Hill RJ, Moldowan JM, Wei Z (2012) The sulfur-isotopic compositions of benyothiophenes and dibenzothiophenes as a proxy for thermochemical sulphate reduction. Geochem Cosmochem Acta 87:152–164

  • Aoyama S, Nishizawa N, Takai K, Ueno Y (2014) Microbial sulfate reduction within the Iheya North subseafloor hydrothermal system constrained by quadruple sulphur isotopes. Earth Planet Sci Lett 398:113–126

    Article  Google Scholar 

  • Aspler LB, Chiarenzelli JR (1998) Precambrian glacial deposits. Sediment Geol 120:34–40

    Article  Google Scholar 

  • Bao Z, Zhao Z, Guham J (2005) Organic geochemistry of sedimentary rock-hosted disseminated gold deposits in southwestern Guizhou Province, China. Acta Geol Sin 79:120–133

    Article  Google Scholar 

  • Barker CE, Pawlewicz MJ (1986) The correlation of vitrinite reflectance with maximum temperature in humic organic matter. In: Buntebarth G, Stegena L (eds) Paleogeothermics, Lecture Notes in Earth Sciences 5. Springer, Berlin, pp 291–329

    Google Scholar 

  • Barnicoat AC, Henderson IHK, Knipe RJ, Yardley BWD, Napier RW, Fox NPC, Kenyon AK, Muntingh DJ, Strydom D, Winkler KS, Lawrence SR, Cornford C (1997) Hydrothermal gold mineralization in the Witwatersrand basin. Nature 386:820–824

    Article  Google Scholar 

  • Benning LG, Seward TM (1996) Hydrosulphide complexing of Au(I) in hydrothermal solutions from 150 to 400°C and 500 to 1500 bars. Geochim Cosmochim Acta 60:1849–1871

    Article  Google Scholar 

  • Bertrand R (1990) Correlations among the reflectances of vitrinite, chitinozoans, graptolites and scolecodonts. Org Geochem 15:565–574

    Article  Google Scholar 

  • Beyssac O, Lazzeri M (2012) Application of Raman spectroscopy to the study of graphitic carbons in the earth sciences. EMU Notes Mineral 12:413–452

    Google Scholar 

  • Bowles JFW (1990) Age dating of individual grains of uraninite in rocks from electron microprobe analyses. Chem Geol 83:47–53

  • Brugger J, Etschmann BE, Grundler PV, Liu W, Testemale D, Pring A (2012) XAS evidence for the stability of polytellurides in hydrothermal fluids up to 599 °C, 800 bar. Am Mineral 97:1519–1522

    Article  Google Scholar 

  • Cathelineau M, Talbot J-Y, Boiron M-C, Gaillard N, Cuney M, Vanhanen E, Lees T, Hudson M, Cook N, Deloule E, Brouand M, Claude Caillat C (2013) The atypical Au-(U)-calc-silicate hosted mineraklization of Rompas (Northern Finland): fluid-rock interactions and ore genesis. Mineral deposit research for a high-tech world. Proceedings of the 12th Biennial SGA Meeting, 12–15 August 2013, Uppsala, Sweden, ISBN 978-91-7403-207-9: 1626–1630

  • Chung DY, Huang SP, Kim KW, Kanatzidis MG (1995) Discrete complexes incorporating heteropolychalcogenide ligands: ring and cage structures in [Au2(TeS3)2]2−, [Ag2Te(TeS3)2]2−, and [Ag2Te(TeSe3)2]2. Inorg Chem 34:4292–4293

    Article  Google Scholar 

  • Curtis DB, Gancarz AJ (1983) Radiolysis in nature: Evidence from the Oklo natural reactors. Svensk Kärnbränsleförsörjning AB/Avdelning KBS Teknisk Rapport 83–10, 56p

  • Drennan GR, Robb, LJ (2006) The nature of hydrocarbons and related fluids in the Witwatersrand basin, South Africa: their role in metal distribution. In: Reimold WU, Gibson RL (eds.) Processes on the early Earth. Geological Society of America, Special Paper 405:353–386

  • England GL, Rasmussen B, Krapez B, Groves DI (2001) The origin of uraninite, bitumen nodules, and carbon seams in Witwatersrand gold-uranium-pyrite ore deposits, based on a Permo-Triassic analogue. Econ Geol 96:1907–1920

    Article  Google Scholar 

  • Farquhar J, Wing BA (2003) Multiple sulphur isotopes and the evolution of the atmosphere. Earth Planet Sci Let 213:1–13

    Article  Google Scholar 

  • Farquhar J, Bao H, Thiemens MH (2000) Atmospheric influence of Earth’s earliest sulphur cycle. Science 289:756–786

    Article  Google Scholar 

  • Faure G, Mensing TM (2005) Isotopes. Principles and applications. Third Edition. John Wiley and Sons Inc., Hoboken, 897 p

  • Fayek M, Janeczek J, Ewing RC (1997) Mineral chemistry and oxygen isotopic analyses of uraninite, pitchblende and uranium alteration minerals from the Cigar Lake deposit, Saskatchewan, Canada. Appl Geochem 12:549–565

    Article  Google Scholar 

  • Forrest RA, Marsh H, Cornford C, Kelly BT (1984) Optical properties of anisotropic carbon. In: Thrower PA (ed.) Chemistry and Physics of Carbon 19:221–330

  • Frimmel HE, Hennigh Q (2015) First whiffs of atmospheric oxygen triggered onset of crustal gold cycle. Mineral Deposita 50:5–23

    Article  Google Scholar 

  • Frimmel HE, Schedel S, Brätz H (2014) Uraninite chemistry as forensic tool for provenance analysis. Appl Geochem 48:104–121

    Article  Google Scholar 

  • Gatter I, Molnár F, Földessy J, Zelenka T, Kiss J, Szebényi G (1999) High-and low-sulfidation epithermal mineralization of the Màtra Mountains, Northeast Hungary. In: Molnár F, Lexa J, Hedenquist J. (Eds.) Epithermal Mineralization of the Western Carpathians. Society of Economic Geologists Guidebook Series 31:155–179

  • Giardini AA, Salotti CA (1969) Kinetics and relations in the calcite-hydrogen reaction and reactions in the dolomite-hydrogen and siderite-hydrogen systems. Am Mineral 54:1151–1172

    Google Scholar 

  • Gize AP (1993) The analysis of organic matter in ore deposits. In: Parnell J, Kucha H, Landais P (eds) Bitumens in ore deposits. Springer-Verlag, Berlin, pp 28–52

    Chapter  Google Scholar 

  • Golding SD, Duck LJ, Young E, Baublys KA, Glikson M, Kamber B (2011) Earliest seafloor hydrothermal systems on earth: comparison with modern analogues. In: Golding SD, Glikson M (eds) Earliest life on Earth: environments and methods of detection. Springer, Berlin, pp 15–49

    Chapter  Google Scholar 

  • Grundler PV, Brugger J, Etschmann BE, Helm L, Liu W, Spry PG, Tian Y, Testemale D, Pring A (2013) Speciation of aqueous tellurium(IV) in hydrothermal solutions and vapors, and the role of oxidized tellurium species in Te transport and gold deposition. Geochim Cosmochim Acta 120:298–325

    Article  Google Scholar 

  • Hazen RM, Ewing RC, Sverjensky DA (2009) Evolution of uranium and thorium minerals. Am Mineral 94:1293–1311

    Article  Google Scholar 

  • Holloway JR (1984) Graphite-CH4-H2O-CO2 equilibria at low-grade metamorphic conditions. Geology 12:455–458

    Article  Google Scholar 

  • Hudson M (2013) Progress report on the geology, mineralization and exploration activities on the Rompas-Rajapalot gold-uranium project, Peräpohja Schist Belt, Lapland, Finland. http://www.mawsonresources.com/i/pdf/ROMPAS-43-101-AUGUST-2013.pdf, 78p

  • Huhma H, Cliff R, Perttunen V, Sakko M (1990) Sm-Nd and Pb isotopic study of mafic rocks associated with early Proterozoic continental rifting: the Peräpojha schist belt in northern Finland. Contrib Mineral Petrol 104:367–379

    Article  Google Scholar 

  • Karhu AH (1993) Paleoproterozoic evolution of the carbon isotope ratios of sedimentary carbonates in the Fennoscandian Shield. Geol Survey Finland Bull 371:1–87

    Google Scholar 

  • Kettler RM, Waldo GS, Penner-Hahn JE, Meyers PA, Kesler SE (1990) Sulfidation of organic matter associated with gold mineralization, Pueblo Viejo, Dominican Republic. Appl Geochem 5:237–248

    Article  Google Scholar 

  • Kuovo O, Tilton GR (1966) Mineral ages from the Finnish Precambrian. J Geol 74:421–442

    Article  Google Scholar 

  • Kyläkoski M, Hanski E, Huhma H (2012) The Petäjäskoski Formation, a new lithostratigraphic unit in the Paleoproterozoic Peräpohja Belt, northern Finland. Bull Geol Soc Finl 84:85–120

    Google Scholar 

  • Laajoki K (2005) Karelian supracrustal rocks. In: Lehtinen M, Nurmi PA, Rämö OT (eds.) Precambrian geology of Finland, key to the evolution of the Fennoscandian Shield. Elsevier, Berlin, Developments of Precambrian Geology, 14: 279–342

  • Lahtinen R, Korja A, Nironen M (2005) Paleoproterozoic tectonic evolution. In: Lehtinen M, Nurmi PA, Rämö OT (eds.) Precambrian geology of Finland, key to the evolution of the Fennoscandian Shield. Elsevier, Berlin, Developments of Precambrian Geology, 14: 481–533

  • Landais P (1996) Organic geochemistry of sedimentary uranium deposits. Ore Geol Rev 11:33–51

    Article  Google Scholar 

  • Le Caër S (2011) Water radiolysis: influence of oxide surfaces on H2 production under ionizing radiation. Water 3:235–253

    Article  Google Scholar 

  • Li T, Park HG, Choi SH (2007) γ-Irradiation-induced preparation of Ag and Au nanoparticles and their characterizations. Mater Chem Phys 105:325–330

    Article  Google Scholar 

  • Liu J, Neretnieks I (1996) A model for radiation energy deposition in natural uranium-bearing systems and its consequences to water radiolysis. J Nucl Mater 231:103–112

    Article  Google Scholar 

  • Loukola-Ruskeeniemi K, Lahtinen H (2012) Multiphase evolution in the black-shale-hosted Ni–Cu–Zn–Co deposit at Talvivaara, Finland. Ore Geol Rev 52:85–99

    Article  Google Scholar 

  • Lunsdorf NK, Dunkl I, Schmidt BC, Rantitsch G, Eynatten H (2014) Towards a higher comparability of geothermometric data obtained by Raman spectroscopy of carbonaceous material. Part I: Evaluation of biasing factors. Geostand Geoanal Res 38:73–94

    Article  Google Scholar 

  • McDougall GJ, Hancock RJ (1981) Gold complexes and activated carbon. A literature review. Gold Bull 14:138–153

    Article  Google Scholar 

  • Melezhik VA, Kump LR, Hanski EJ, Fallick AE, Prave AR (2013) Tectonic evolution and major global Earth-surface palaeoenvironmental events in the Palaeoproterozoic. In: Melezhik VA, Prave AR, Hanski EJ, Fallick AE, Lepland A, Kump LR, Strauss H (eds) Reading the archive of Earth’s oxygenation Vol. 1: The Palaeoproterozoic of Fennoscandia as context for the Fennoscandian Arctic Russia - Drilling Early Earth Project. Springer-Verlag, Berlin, pp 3–24

    Chapter  Google Scholar 

  • Mercadier J, Annesley IR, McKechnie CL, Bogdan TS, Creighton S (2013) Magmatic and metamorphic uraninite mineralization in the western margin of the Trans-Hudson orogen (Saskatchewan, Canada): a uranium source for unconformity-related uranium deposits? Econ Geol 108:1037–1065

    Article  Google Scholar 

  • Mernagh TP, Heinrich CA, Leckie F, Carville DP, Gilbert DJ, Valenta RK, Wyborn LAI (1994) Chemistry of low-temperature hydrothermal gold, platinum and palladium (±uranium) mineralization at Coronation Hill, Northern Territory, Australia. Econ Geol 89:1053–1073

    Article  Google Scholar 

  • Metzger K, Essene EJ, Halliday AN (1992) Closure temperature of the Sm–Ndsystem in metamorphic garnets. Earth Planet Sci Lett 113:397–409

    Article  Google Scholar 

  • Mikucki E (1998) Hydrothermal transport and depositional processes in Archaean lode–gold systems: a review. Ore Geol Rev 13:307–321

    Article  Google Scholar 

  • Munz IA, Yardley BWD, Banks DA, Wayne D (1995) Deep penetration of sedimentary fluids into basement rocks from southern Norway: evidence from hydrocarbon and brine inclusions in quartz veins. Geochim Cosmochim Acta 59:239–254

    Article  Google Scholar 

  • Myers WB (1981) Genesis of uranium-gold pyritic conglomerates. Geological Survey Professional Paper 1161-AA: 26p

  • Nagy B (1993) Kerogens and bitumens in Precambrian uraniferous ore deposits: Witwatersrand, South Africa, Elliot Lake, Canada and the natural fission track reactors, Oklo, Gabon. In: Parnell J (ed) Bitumens in ore deposits. Springer, Berlin, pp 287–333

    Chapter  Google Scholar 

  • Nironen M (2005) Proterozoic orogenic granitoid rocks. In: Lehtinen M, Nurmi PA, Rämö OT (eds) Precambrian geology of Finland, key to the evolution of the Fennoscandian Shield, Developments of Precambrian Geology 14. Elsevier, Berlin, pp 443–480

    Chapter  Google Scholar 

  • Oduro H, Kamyshny JA, Weifu G, Farquhar J (2011) Multiple sulphur isotope analysis of volatile organic sulphur compounds and their sulfonium precursors in coastal marine environments. Mar Chem 124:78–89

    Article  Google Scholar 

  • Ojakangas RW (1988) Glaciation: and uncommon mega-event as a key to intracontinental and intercontinental correlation of Early Proterozoic basin fill, North American and Baltic cratons. In: Kleinspeh KL, Paola C (eds) New perspectives in basin analysis. Springer, Berlin, pp 431–444

    Chapter  Google Scholar 

  • Pal DC, Rhede D (2013) Geochemistry and chemical dating of uraninite in the Jaduguda uranium deposit, Singhbum shear zone, India – implications for uranium mineralization and geochemical evolution of uraninite. Econ Geol 108:1499–1515

    Article  Google Scholar 

  • Parnell J (2004) Mineral radioactivity in sands as a mechanism for fixation of organic carbon on the early Earth. Orig Life Evol Biosph 34:533–547

    Article  Google Scholar 

  • Parnell J, McCready A (2000) Paragenesis of gold- and hydrocarbon-bearing fluids in gold deposits. In: Glikson M, Mastalerz M (eds) Organic matter and mineralization: thermal alteration, hydrocarbon generation and role in metallogenesis. Kluwer Academic Publishers, Dodrecht, pp 38–52

    Chapter  Google Scholar 

  • Perttunen V (1991) Kemin, Karungin, Simon ja Runkauksen kartta-alueiden kallioperä. Pre-Quaternary rocks of the Kemi, Karunki, Simo and Runkaus map-sheet areas. Geological map of Finland, 1: 100 000. Explanation to the maps of Pre-Quaternary rocks, sheets 2541 Kemi, 2542 + 2524 Karunki, 2543 Simo and 2544 Runkaus. Geological Survey of Finland, pp 1–80

  • Perttunen V, Vaasjoki M (2001) U-Pb geochronology of the Peräpohja Schist Belt, northwestern Finland. In: Vaasjoki, M. (Ed.), Radiometric age determinations from Finnish Lapland and their bearing on the timing of Precambrian volcano-sedimentary sequences. Geological Survey of Finland Special Paper 33: 45–84

  • Perttunen V, Hanski E, Väänänen J, Eilu P, Lappalainen M (1996) Rovaniemin kartta-alueen Kallioperä. Geological Map of Finland 1:100 000. Explanation to the maps of Pre-Quaternary rocks, sheet 3612. Geological Survey of Finland, pp 1–42

  • Pokrovski GS, Akinfiev NN, Borisova AY, Zotov AV, Kouzmanov K (2014) Gold speciation and transport in geological fluids: insights from experiments and physical-chemical modeling. Geol Soc Lond, Spec Publ 402:9–70

    Article  Google Scholar 

  • Potter J, Konnerup-Madsen J (2003) A review of occurrence and origin of abiogenic hydrocarbons in igneous rocks. Geol Soc Lond, Spec Publ 214:151–174

    Article  Google Scholar 

  • Radtke AS, Scheiner BJ (1970) Studies of hydrothermal gold deposition (I). Carlin Gold deposit, Nevada: the role of carbonaceous materials in gold deposition. Econ Geol 65:87–102

    Article  Google Scholar 

  • Ranta JP (2012) Peräpohjan liuskealueen pohjoisosan yksiköiden zirkoniajoitus U-Pb-menetelmällä. Pro gradu tutkielma, Oulun Yliopisto, MSc Thesis, University of Oulu

  • Ranta JP, Lauri LS, Hanski E, Huhma H, Lahaye Y, Vanhanen E (2015) U-Pb and Sm-Nd isotopic constraints on the evolution of the Paleoproterozoic Peräpohja Belt, northern Finland. Precambrian Res 266:246–259

    Article  Google Scholar 

  • Rasmussen B, Glover JE, Foster CB (1993) Polymerisation of hydrocarbons by radioactive minerals in sedimentary rocks: diagenetic and economic significance. In: Parnell J, Kucha H, Landais P. (Eds) Bitumens in Ore Deposits. Springer Verlag, 490–509

  • Romberger SB (1990) Transport and deposition of gold in hydrothermal systems. In: Robert F (ed.) Greenstone gold and crustal evolution, NUNA Conference, pp 61– 66

  • Romer RL, Thomas R, Stein H, Rhede D (2007) Dating multiply overprinted Sn-mineralized granites – examples from the Erzgebirge, Germany. Mineral Deposita 42:337–359

    Article  Google Scholar 

  • Savary V, Pagel M (1997) The effects of water radiolysis on local redox conditions in the Oklo, Gabon, natural fission reactors 10 and 16. Geochim Cosmochim Acta 61:4479–4493

    Article  Google Scholar 

  • Schidlowski M (1981) Uraniferous constituents of the Witwatersrand conglomerates: ore-microscopic observations and implications for Witwatersrand metallogeny. U.S. Geological Survey Professional Papaper N1–N29

  • Schoenherr J, Littke R, Urai JL, Kukla PA, Rawahi Z (2007) Polyphase thermal evolution in the Infra-Cambrian Ara Group (South Oman Salt Basin) as deduced by maturity of solid reservoir bitumen. Org Geochem 38:1293–1318

    Article  Google Scholar 

  • Spangenberg J, Frimmel H (2001) Basin-internal derivation of hydrocarbons in the Witwatersrand basin, South Africa: evidence from bulk and molecular 13C data. Chem Geol 173:339–355

    Article  Google Scholar 

  • Spirakis CS (1996) The role of organic matter in the formation of uranium deposits in sedimentary rocks. Ore Geol Rev 11:53–69

    Article  Google Scholar 

  • Stacey JS, Kramer JD (1975) Approximation of terrestrial lead isotope evolution by a two-stage model. Earth Planet Sci Lett 26:207–221

    Article  Google Scholar 

  • Steiger RH, Jäger E (1977) Subcommission on geochronology: convention on the use of decay constants in geo- and cosmochronology. Earth Planet Sci Lett 36:359–362

    Article  Google Scholar 

  • Strauss H, Melezhik V, Lepland A, Fallick AE, Hanski E, Filippov MM, Deines YE, Illing CJ, Cerne AE, Brasier AT (2013) Enhanced accumulation of organic matter: The Shunga Event. In: Melezhik VA, Prave AR, Hanski EJ, Fallick AE, Lepland A, Kump LR, Strauss H (eds) Reading the archive of Earth’s oxygenation, vol 3, The Palaeoproterozoic of Fennoscandia as context for the Fennoscandian Arctic Russia — Drilling Early Earth Project. Springer-Verlag, Berlin, pp 1195–1275

    Chapter  Google Scholar 

  • Szatmari P (1989) Petroleum formation by Fischer-Tropsch synthesis in Plate Tectonics. Am AssoPet Geol Bull 73:989–998

    Google Scholar 

  • Vaasjoki M (1981) The lead isotopic composition of some Finnish galenas. Geological Survey of Finland, Bulletin, 316: 30p

  • Vanhanen E, Cook NDJ, Hudson MT, Dahlenborg L, Ranta JP, Havela T, Kinnunen J, Molnár F, Prave AR, Oliver, NHS (2015) Rompas prospect, Peräpohja Schist Belt, Northern Finland. In: Maier W, Lahtinen R, O’Brien H (Eds.), Ore deposits of Finland. Elsevier. Netherlands, pp 467–484

  • Vilor NV, Kaz’min LA, Goryachev NA (2014) Sulfoarsenide complexes of gold in hydrothermal solutions in the formation of gold ore deposits (thermodynamic modeling). Dokl Earth Sci 458:1086–1091

    Article  Google Scholar 

  • Watanabe Y, Farquhar J, Ohmoto H (2009) Anomalous fractionations of sulphur isotopes during thermochemical sulfate reduction. Science 324:370–373

    Article  Google Scholar 

  • Werne JP, Lyons TW, Hollander DJ, Schouten S, Hopmans EC, Damsté JS (2008) Investigating pathways of diagenetic organic matter sulfurization using compound-specific sulfur isotope analysis. Geochem Cosmochem Acta 72:3489–3502

  • Williams-Jones AE, Migdisov AA (2007) The solubility of gold in crude oil: implications for ore genesis. In: Andrew CJ et al (eds) Proceedings of the 9th Biennial SGA Meeting. Millpress, Dublin, pp 765–768

    Google Scholar 

  • Williams-Jones AE, Bowell RJ, Migdisov AA (2009) Gold in solution. Elements 5:281–287

    Article  Google Scholar 

  • Wirth R (2004) Focused ion beam technology (FIB): a novel technology for advanced application of micro- and nanoanalysis in geosciences and applied mineralogy. Eur J Mineral 16:863–876

    Article  Google Scholar 

  • Wirth R (2009) Focused Ion Beam (FIB) combined with SEM and TEM: advanced analytical tools for studies of chemical composition, microstructure and crystal structure in geomaterials on a nanometre scale. Chem Geol 261:217–229

    Article  Google Scholar 

  • Yang C, Hesse R (1993) Diagenesis and anchimetamorphism in an overthrust belt, external domain of the Taconian Orogen, southern Canadian Appalachians--ll. Paleogeothermal gradients derived from maturation of different types of organic matter. Org Geochem 20:381–403

    Article  Google Scholar 

  • Young SA, Loukola-Ruskeeniemi K, Pratt LM (2013) Reactions of hydrothermal solutions with organic matter in Paleoproterozoic black shales at Talvivaara, Finland: evidence from multiple sulphur isotopes. Earth Planet Sci Lett 367:1–14

    Article  Google Scholar 

  • Zayikin Y, Zayikina R (2014) Petroleum radiation processing. CRC Press, Taylor and Francis Group: 375p

Download references

Acknowledgments

E. Vanhanen, M. Hudson (Mawson Resources Ltd.), H. Huhma and R. Lahtinen (Geol. Surv. Finland) are thanked for discussions leading to development and testing of various ideas during our studies at Rompas. T. Havela and J. Kinnunen (Mawson Resources Ltd.) provided valuable help in selecting drill core samples for our studies. Comments by A. Middleton (Geol. Survey. Finland), M. Fayek (associate editor, Mineralium Deposita) and two anonymous reviewers helped to improve clarity of some statements in the paper. This work was supported by the Academy of Finland, project no. 281670.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ferenc Molnár.

Additional information

Editorial handling: M. Fayek

Electronic supplementary material

Below is the link to the electronic supplementary material.

Electronic Supplement Table 1

Electron microprobe data of minerals from Rompas. (XLSX 158 kb)

Electronic Supplement Table 2

Sulphur isotope data for sulphide minerals and pyrobitumen from Rompas. (XLSX 16 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Molnár, F., Oduro, H., Cook, N.D.J. et al. Association of gold with uraninite and pyrobitumen in the metavolcanic rock hosted hydrothermal Au-U mineralisation at Rompas, Peräpohja Schist Belt, northern Finland. Miner Deposita 51, 681–702 (2016). https://doi.org/10.1007/s00126-015-0636-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00126-015-0636-6

Keywords

Navigation