Skip to main content
Log in

Magnetic properties related to hydrothermal alteration processes at the Escondida porphyry copper deposit, northern Chile

  • Article
  • Published:
Mineralium Deposita Aims and scope Submit manuscript

Abstract

Fluid–rock interaction related to the circulation of hydrothermal fluids can strongly modify the physicochemical properties of wall rocks in porphyry Cu deposits. These processes can also produce compositional and textural changes in ferromagnetic minerals, which can be quantified using magnetic methods. In the Escondida porphyry Cu deposit of northern Chile, each hydrothermally altered lithology is characterized by a discrete assemblage of Fe–Ti oxide minerals. These minerals have distinctive bulk magnetic susceptibility (K bulk), temperature-dependent magnetic susceptibility, and magnetic hysteresis parameters. Selectively altered rocks (i.e., potassic and chloritic alteration types) exhibit the highest K bulk values (>3.93 × 10−3 SI units), and their hysteresis parameters indicate multidomain magnetic mineral behavior. This suggests that these rocks are composed of the coarsest magnetic grain sizes within the deposit. Optical analyses and susceptibility–temperature curves confirm that the magnetic signals in selectively altered rocks are mainly carried by secondary magnetite. In contrast, pervasively altered rocks (i.e., quartz-sericite and argillic alteration types) exhibit low K bulk values (<1.93 × 10−4 SI units) and contain smaller pseudo-single domain magnetic grain assemblages. This is consistent with the destruction and/or reduction in size of magnetite under acidic conditions. The results therefore demonstrate a genetic relationship between the hydrothermal alteration processes, Fe–Ti oxide minerals, and magnetic properties of the wall rock in the Escondida deposit. These magnetic methods can be considered a sensitive and efficient petrophysical tool for the identification and semi-quantification of alteration assemblages, and facilitating the recognition and mapping of discrete hydrothermal zones during exploration and operation of porphyry Cu deposits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Alpers CN, Brimhall GH (1988) Middle Miocene climatic change in the Atacama Desert, northern Chile: evidence from supergene mineralization at La Escondida. Geol Soc Am Bull 100:1640–1656. doi:10.1130/0016-7606(1988)100<1640:MMCCIT>2.3.CO;2

    Article  Google Scholar 

  • Arancibia ON, Clark AH (1996) Early magnetite-amphibole-plagioclase alteration-mineralization in the Island Copper porphyry copper-gold-molybdenum deposit, British Columbia. Econ Geol 91:402–438. doi:10.2113/gsecongeo.91.2.402

    Article  Google Scholar 

  • Astudillo N (2008) Mineralogía magnética y paleomagnetismo en los megayacimientos tipo pórfido cuprífero Chuquicamata y El Teniente, Chile. Unpublished PhD thesis, Universidad de Chile, p 306

  • Astudillo N, Roperch P, Townley B, Arriagada C, Maksaev V (2008) Importance of small block rotations in damage zones along transcurrent faults. Evidence from the Chuquicamata open pit, Northern Chile. Tectonophysics 450:1–20. doi:10.1016/j.tecto.2007.12.008

    Article  Google Scholar 

  • Astudillo N, Roperch P, Townley B, Arriagada C, Chauvin A (2010) Magnetic polarity zonation within El Teniente copper-molybdenum porphyry deposit, central Chile. Miner Deposita 45:23–41. doi:10.1007/s00126-009-0256-0

    Article  Google Scholar 

  • Banerjee SK (1991) Magnetic properties of Fe–Ti oxides. In: Lindsley DH (ed), Oxide minerals: petrologic and magnetic significance. Rev Mineral 25: 107-128

    Google Scholar 

  • Beane RE, Bodnar RJ (1995) Hydrothermal fluids and hydrothermal alterations in porphyry copper deposits. In: Pierce FW, Bohm JG (Eds) Porphyry copper deposits of the American Cordillera. Arizona Geol Soc Digest 20, Tucson, pp 83-93

  • Beane RE, Titley SR (1981) Porphyry copper deposits. Part II. Hydrothermal alteration and mineralization. Econ Geol 75 TH Anniversary Volume pp, 235-263

  • Brimhall G, Agee C, Stoffregen R (1985) The hydrothermal conversion of hornblende to biotite. Can Mineral 23:369–379

    Google Scholar 

  • Candela P (1997) A review of shallow, ore-related granites: textures, volatiles, and ore metals. J Petrol 38(12):1619–1633. doi:10.1093/petroj/38.12.1619

    Article  Google Scholar 

  • Cathles LM, Shannon R (2007) How potassium silicate alteration suggest the formation of porphyry ore deposits begins with the nearly explosive but barren expulsion of large volumes of magmatic water. Earth Planet Sci Lett 262:92–108. doi:10.1016/j.epsl.2007.07.029

    Article  Google Scholar 

  • Clark DA (1997) Magnetic petrophysics and magnetic petrology: aids to geological interpretation of magnetic surveys. J Aust Geol Geophys 17(2):83–103

    Google Scholar 

  • Clark DA (1999) Magnetic petrology of igneous intrusions: implications for exploration and magnetic interpretation. Explor Geophys 30:5–26

    Article  Google Scholar 

  • Clark D, Schmidt P (2001) Petrophysical properties of the Goonumbla volcanic complex, NSW: implications for magnetic and gravity signatures of porphyry Cu-Au mineralization. Explor Geophys 32:171–175

    Article  Google Scholar 

  • Clark DA, French DH, Lackie MA, Schmidt PW (1992) Magnetic petrology: application of integrated rocks magnetic and petrological techniques to geological interpretation of magnetic surveys. Explor Geophys 23:65–68

    Article  Google Scholar 

  • Cornejo P, Tosdal RM, Mpodozis C, Tomlinson AJ, Rivera O, Fanning CM (1997) El Salvador, Chile porphyry copper deposit revisited: geologic and geocronologic framework. Int Geol Rev 39:22–54

    Article  Google Scholar 

  • Cox SF, Knackstedt MA, Braun J (2001) Principles of structural controls on permeability and fluid flow in hydrothermal systems. In: Richards JP, Tosdal RM (eds) Structural controls on ore genesis, Society of Economic Geologists Reviews 14: 1-24

  • Day R, Fuller M, Schmidt VA (1977) Hysteresis properties of titanomagnetites: grain-size and compositional dependence. Phys Earth Planet Int 13:260–267. doi:10.1016/0031-9201(77)90108-X

    Article  Google Scholar 

  • Dunlop DJ (2002) Theory and application of the Day plot (M rs/M S versus H cr/H c). 1. Theoretical curves and test using titanomagnetite data. J Geophys Res 107(3)

  • Dunlop DJ, Özdemir Ö (1997) Rock magnetism: fundamentals and frontiers. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Ferré EC (2002) Theorical models of intermediate and inverse AMS fabrics. Geophys Res Lett 29 (7). doi:10.1029/2001GL014367

  • Fournier RO (1999) Hydrothermal processes related to movement of fluid from plastic into brittle rock in the magmatic-epithermal environment. Econ Geol 94:1193–1211. doi:10.2113/gsecongeo.94.8.1193

    Article  Google Scholar 

  • Frost B (1991) Magnetic petrology: factors that control the occurrence of magnetite in crustal rocks. In: Lindsley DH (ed) Oxide minerals: petrologic and magnetic significance: Rev Mineral 25, 489-506.

  • Geissman JW, Kelly WC, Van der Voo R, Brimhall GH (1980) Paleomagnetic documentation of the early, high-temperature zone of mineralization at Butte, Montana. Econ Geol 75:1210–1219

    Article  Google Scholar 

  • Gustafson LB, Hunt JB (1975) The porphyry copper deposit at El Salvador, Chile. Econ Geol 70:857–912. doi:10.2113/gsecongeo.70.5.857

    Article  Google Scholar 

  • Haggerty SE (1991) Oxide textures-a mini atlas. In: Lindsley DH (ed) Oxide minerals: petrologic and magnetic significance. Rev Mineral 25: 129-219

  • Herrero-Bervera E, Acton G (2011). Absolute paleointensities from an intact section of oceanic crust cored at ODP/IODP site 1256 in the Equatorial Pacific. In: Petrovsky E, Ivers D, Harinarayana T, Herrero-Bervera E (eds), The earth’s magnetic interior. IAGA Spec Sopron Book Ser 1:169–179. doi: 10.1007/978-94-007-0323-0_13

  • Hervé M, Sillitoe R, Wong C, Fernández P, Crignola F, Ipinza M, Urzúa F (2012) Geologic overview of the Escondida porphyry copper district, Northern Chile. In: Hedenquist JW, Harris M, Camus F (eds) Geology and genesis of major copper deposits and districts of the world: a tribute to Richard H. Sillitoe. Society of Economic Geologists, Boulder, pp 55–78, Special Publication 16

    Google Scholar 

  • Just J (2005) Modification of magnetic properties in granite during hydrothermal alteration (EPS-1 borehole, Upper Rhine Graben). PhD thesis, University of Heidelberg, Germany

  • Just J, Kontny K (2012) Thermally induced alterations of minerals during measurements of the temperature dependence of magnetic susceptibility: a case study from the hydrothermally altered Soultz-sous-Forêts granite, France. Int J Earth Sci 101:819–839. doi:10.1007/s00531-011-0668-9

    Article  Google Scholar 

  • Krása D, Herrero-Bervera E (2005) Alteration induced changes of magnetic fabric as exemplified by dykes of the Koolau volcanic range. Earth Planet Sci Lett 240:445–453. doi:10.1016/j.epsl.2005.09.028

    Article  Google Scholar 

  • Krása D, Herrero-Bervera E, Acton G, Rodriguez S (2011) Magnetic mineralogy of a complete oceanic crustal section (IODP hole 1256D). In: Petrovský E, Herrero-Bervera E, Harinarayana T, Ivers D, (Eds), The earth’s magnetic interior. Springer, Dordrecht: IAGA Special Sopron Book Series 1: 169-179

  • Lattard D, Engelmann R, Kontny A, Sauerzapf U (2006) Curie temperatures of synthetic titanomagnetites in the Fe-Ti-O system: effects of composition, crystal chemistry, and thermomagnetic methods. J Geophys Res 111:B12S28. doi:10.1029/2006JB004591

    Google Scholar 

  • Lindsay D, Zentilli M, Rojas de la Rivera J (1995) Evolution of an active ductile to brittle shear system controlling mineralization at the Chuquicamata Porphyry Copper Deposit, Northern Chile. Int Geol Rev 37:945–958

    Article  Google Scholar 

  • Lowell JD, Guilbert JM (1970) Lateral and vertical alteration-mineralization zoning in porphyry copper ore deposits. Econ Geol 65:373–408. doi:10.2113/gsecongeo.65.4.373

    Article  Google Scholar 

  • Marinovic N, Smoje I, Maksaev V, Hervé M, Mpodozis C (1992) Hoja de Aguas Blancas, Región de Antofagasta. Serv Nac Geol Minería, Carta Geol Chile, p 70

  • Meyer C (1965) An early potassic type of wall-rock alteration at Butte, Montana. Am Mineral 50:1717–1722

    Google Scholar 

  • Mpodozis C, Cornejo P (2012) Cenozoic tectonics and porphyry copper systems of the Chilean Andes. In: Hedenquist JW, Harris M, Camus F (eds) Geology and genesis of major copper deposits and districts of the world: a tribute to Richard H. Sillitoe. Society of Economic Geologists, Boulder, pp 329–360, Special Publication 16

    Google Scholar 

  • Mpodozis C, Marinovic N, Smoje I (1993) Eocene left lateral strike slip faulting and clockwise block rotations in the Cordillera de Domeyko, west of Salar de Atacama, northern Chile. In: Symposium Andean Geodinamics, N° 2: 225-228. Oxford, UK

  • Oliva-Urcia B, Kontny A, Vahle C, Schleicher AM (2011) Modification of the magnetic mineralogy in basalts due to fluid–rock interactions in a high-temperature geothermal system (Krafla, Iceland). Geophys J Int 186:155–174. doi:10.1111/j.1365-246X.2011.05029.x

    Article  Google Scholar 

  • Padilla-Garza RA, Titley SR, Pimentel FB (2001) Geology of the Escondida porphyry copper deposit, Antofagasta region, Chile. Econ Geol 96:307–324. doi:10.2113/gsecongeo.96.2.307

    Article  Google Scholar 

  • Petersen N, Vali H (1987) Observation of shrinkage cracks in ocean-floor titanomagnetites. Phys Earth Planet Int 46:197–205. doi:10.1016/0031-9201(87)90182-8

    Article  Google Scholar 

  • Pokorný J, Pokorný P, Suza P, Hrouda F (2011) A multi-function Kappabridge for high precision measurement of the AMS and the variations of magnetic susceptibility with field, temperature and frequency. In: Petrovský E, Herrero-Bervera E, Harinarayana T, Ivers D, editors. The earth's magnetic interior. Springer, Dordrecht: IAGA Special Sopron Book Series 1: 293-301

  • Purucker E, Clark DA (2011) Mapping and interpretation of the lithospheric magnetic field. In: Mandea M, Korte M (Eds) Geomagnetic observations and models. pp 311-337

  • Quiroz F (2003) Geology and hypogene alteration and mineralization at Escondida, northern Chile: porphyry and high sulphidation events, unpublished MSc thesis, Tucson, University of Arizona, 82 p

  • Reed M (1997) Hydrothermal alteration and its relationships to ore fluid composition. In: Barnes KL (ed) Geochemistry of hydrothermal ore deposits. Wiley, pp 303-366

  • Reutter KJ, Scheuber E, Helmcke D (1991) Structural evidence of orogeny-parallel strike slip displacements in the Precordillera of northern Chile. Geol Rundsch 80:135–153

    Article  Google Scholar 

  • Richards JP (2003) Tectono-magmatic precursors for porphyry Cu-(Mo-Au) deposit formation. Econ Geol 98:1515–1533. doi:10.2113/gsecongeo.98.8.1515

    Article  Google Scholar 

  • Richards JP, Boyce AJ, Pringle MS (2001) Geologic evolution of the Escondida area, Northern Chile: a model for special and temporal localization of porphyry Cu mineralization. Econ Geol 96:271–305. doi:10.2113/gsecongeo.96.2.271

    Article  Google Scholar 

  • Rusk B, Reed M, Dilles J, Klemm L, Heinrich C (2004) Compositions of magmatic hydrothermal fluids determined by LA-ICP-MS of fluid inclusions from the porphyry copper-molybdenum deposit at Butte, MT. Chem Geol 210:173–199. doi:10.1016/j.chemgeo.2004.06.011

    Article  Google Scholar 

  • Seedorff E, Dilles JH, Proffett JM, Einaudi MT, Zucher L, Stavast WJA, Johnson DA, Barton MD (2005) Porphyry deposits: characteristics, and origin of hypogene features. Econ Geol 100 TH Anniversary Volume pp, 251-298

  • Sexton MA, Morrison GW, Orr TOH, Foley AM, Wormald PJ (1995) The Mt Leyshon magnetic anomaly. Explor Geophys 26:84–91

    Article  Google Scholar 

  • Sillitoe RH (2010) Porphyry copper systems. Econ Geol 105:3–41. doi:10.2113/gsecongeo.105.1.3

    Article  Google Scholar 

  • Tarling DH, Hrouda F (1993) The magnetic anisotropy of rocks. Chapman and Hall, London, 217 pp

    Google Scholar 

  • Taylor GK (2000) Paleomagnetism applied to magnetic anomaly interpretation: a new twist to the search for mineralisation in northern Chile. Miner Deposita 35:377–384

    Article  Google Scholar 

  • Townley B, Roperch P, Oliveros V, Tassara A, Arriagada C (2007) Hydrothermal alteration and magnetic properties of rocks in the Carolina de Michilla stratabound copper district, northern Chile. Miner Deposita 42:771–789. doi:10.1007/s00126-007-0134-6

    Article  Google Scholar 

  • Ulrich T, Gunther D, Heinrich C (2001) The evolution of a porphyry Cu-Au deposit, based on LA-ICP-MS analysis of fluid inclusions: Bajo de la Alumbrera, Argentina. Econ Geol 96:1743–1774. doi:10.2113/gsecongeo.96.8.1743

    Article  Google Scholar 

  • Urzúa F (2009) Geology, geochronology and structural evolution of La Escondida copper district, northern Chile. Unpublished PhD thesis, centre for ore deposit and exploration studies, University of Tasmania, Australia

  • Véliz WO (2004) Relación espacio-temporal del sistema pórfido cuprífero y epitermal en el yacimiento Escondida, provincia de Antofagasta, segunda región, Chile. Unpublished MSc thesis, Antofagasta, Universidad Católica del Norte, 139 p

  • Vergara G (2002) Geología estructural de Escondida, Segunda Región de Antofagasta, Chile: Implicancia de la Deformación frágil en el desarrollo de un sistema de pórfido cuprífero. Unpublished BSc thesis, Antofagasta, Universidad Católica del Norte, 82 p

Download references

Acknowledgments

This research was funded by projects UCN-MEL 25.02.02/31.10.10.99, MECESUP 0711, and CONICYT 78092009. We thank Minera Escondida Ltd. for providing technical and logistical support during field and sampling activities. Analyses and interpretation of X-ray diffraction data were provided by Mr. F. Álvarez and Dr. N. Guerra, respectively. We also thank Dr. E. Medina for his valuable collaboration on mineralogical studies of Fe–Ti oxide minerals using scanning electron microscopy and Mr. G. Miranda for his assistance in preparation of some figures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Riveros.

Additional information

Editorial handling: F. Barra

Rights and permissions

Reprints and permissions

About this article

Cite this article

Riveros, K., Veloso, E., Campos, E. et al. Magnetic properties related to hydrothermal alteration processes at the Escondida porphyry copper deposit, northern Chile. Miner Deposita 49, 693–707 (2014). https://doi.org/10.1007/s00126-014-0514-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00126-014-0514-7

Keywords

Navigation