Skip to main content
Log in

Structural and biological control of the Cenozoic epithermal uranium concentrations from the Sierra Peña Blanca, Mexico

  • Article
  • Published:
Mineralium Deposita Aims and scope Submit manuscript

Abstract

Epithermal uranium deposits of the Sierra Peña Blanca are classic examples of volcanic-hosted deposits and have been used as natural analogs for radionuclide migration in volcanic settings. We present a new genetic model that incorporates both geochemical and tectonic features of these deposits, including one of the few documented cases of a geochemical signature of biogenic reducing conditions favoring uranium mineralization in an epithermal deposit. Four tectono-magmatic faulting events affected the volcanic pile. Uranium occurrences are associated with breccia zones at the intersection of fault systems. Periodic reactivation of these structures associated with Basin and Range and Rio Grande tectonic events resulted in the mobilization of U and other elements by meteoric fluids heated by geothermal activity. Focused along breccia zones, these fluids precipitated under reducing conditions several generations of pyrite and uraninite together with kaolinite. Oxygen isotopic data indicate a low formation temperature of uraninite, 45–55°C for the uraninite from the ore body and ∼20°C for late uraninite hosted by the underlying conglomerate. There is geochemical evidence for biological activity being at the origin of these reducing conditions, as shown by low δ34S values (∼−24.5‰) in pyrites and the presence of low δ13C (∼−24‰) values in microbial patches intimately associated with uraninite. These data show that tectonic activity coupled with microbial activity can play a major role in the formation of epithermal uranium deposits in unusual near-surface environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Alba LA, Chavez R (1974) K-Ar ages of volcanic rocks from the Central Sierra de Peña Blanca, Chihuahua, Mexico. Isochron/West 10:21–23

    Google Scholar 

  • Aniel B, Leroy J (1985) The reduced uraniferous mineralization associated with the volcanic rocks of the Sierra Peña Blanca (Chihuahua, Mexico). Am Mineral 70:1290–1297

    Google Scholar 

  • Aniel-George B, Leroy JL, Poty B (1991) Volcanogenic uranium mineralizations in the Sierra Peña Blanca District, Chihuahua, Mexico: three genetic models. Econ Geol 86:233–248

    Article  Google Scholar 

  • Aranda-Gomez JJ, Housh TB, Luhr JF, Henry CD, Becker T, Chavez-Cabello G (2005) Reactivation of the San Marcos during mid-to-late tertiary extension, Chihuahua, Mexico. Geol Soc Am Spec Pap 393:509–521

    Google Scholar 

  • Berner RA (1985) Sulfate reduction, organic matter decomposition and pyrite formation. Phil Trans R Soc A315:25–38

    Google Scholar 

  • Blakeman RJ, Ashton JH, Boyce AJ, Fallick AE, Russell MJ (2002) Timing of interplay between hydrothermal and surface fluids in the Navan Zn+Pb orebody, Ireland: evidence from metal distribution trends, mineral textures and δ34S analyses. Econ Geol 97:73–91

    Article  Google Scholar 

  • Bryan SE, Ferrari L, Reiners PW, Allen CM, Petrone CM, Ramos-Rosique A, Campbell IH (2008) New insights into crustal contributions to large-volume rhyolite generation in the mid-Tertiary Sierra Madre Occidental province, Mexico, revealed by U–Pb geochronology. J Petrology 49:47–77

    Article  Google Scholar 

  • Cai C, Dong H, Li H, Xiao X, Ou G, Zhang C (2007) Mineralogical and geochemical evidence for coupled bacterial uranium mineralization and hydrocarbon oxidation in the Shashagetai Deposit, NW China. Chem Geol 236:167–179

    Article  Google Scholar 

  • Calas G (1977) Les phénomènes d’altération hydrothermale et leur relation avec des minéralisations uranifères en milieu volcanique: le cas des ignimbrites tertiaires de la Sierra de Peña Blanca, Chihuahua. Sci Géol Bull 30:3–18

    Google Scholar 

  • Calas G (1979) Etude expérimentale du comportement de l’uranium dans les magmas: états d’oxydation et coordinance. Geochim Cosmochim Acta 43:1521–1531

    Article  Google Scholar 

  • Calas G, Allard T, Balan E, Morin G, Sorieul S (2004) Radiation-induced defects in nonradioactive natural minerals: mineralogical and environmental significance. Mater Res Soc Symp Proc 792:81–92

    Google Scholar 

  • Calas G, Agrinier P, Allard T, Ildefonse P (2008) Alteration geochemistry of the Nopal I uranium deposit (Chihuahua, Mexico), a natural analogue in volcanic tuffs. Terra Nova 20:206–212

    Article  Google Scholar 

  • Chabiron A, Cuney M, Poty B (2003) Possible uranium sources for the largest uranium district associated with volcanism: the Streltsovka caldera (Transbaikalia, Russia). Miner Deposita 38:127–140

    Google Scholar 

  • Chapin CE (1979) Evolution of the Rio Grande rift—a summary. In: Riecker RE (ed) Rio Grande rift in tectonics and magmatism. American Geophysical Union, Washington, DC

    Google Scholar 

  • Chaulot-Talmon JF (1984) Geologic and structural study of the tertiary ignimbrites of the Sierra Madre Occidental between Hermosillo and Chihuahua, Mexico. Unpublished PhD Thesis, University of Paris Sud, Orsay, France

  • Chavez RA, Iza RD (1975) Geologia de la Sierra de Peña Blanca:Internal report. I.N.E.N, Mexico

    Google Scholar 

  • Crowe DE, Vaughan RG (1996) Improved standardization techniques for laser microprobe δ34S (CDT) determination. Am Mineral 81:187–193

    Google Scholar 

  • Dobson PF, Fayek M, Goodell PC, Ghezzehei TA, Melchor F, Murell MT, Oliver R, Reyes-Cortes IA, Simmons A (2008) Stratigraphy of the PB-1 well, Nopal I uranium deposit, Sierra Peña Blanca, Chihuahua, Mexico. Int Geol Rev 50:959–974

    Article  Google Scholar 

  • Eaton GP (1982) The Basin and Range Province; Origin and tectonic significance. Annu Rev Earth Planet Sci 10:409–440

    Article  Google Scholar 

  • Ewing RC (1999) Less geology in the geological disposal of nuclear waste. Science 286:415–416

    Article  Google Scholar 

  • Fayek M, Kyser TK (1999) Stable isotope geochemistry of uranium deposits. In: Burns PC, Finch R (eds) Uranium: minerals, chemistry and the environment, vol 38. Reviews in Mineralogy, Washington, DC, pp 181–220

    Google Scholar 

  • Fayek M, Kyser TK (2000) Low temperature isotopic fractionation in the uraninite–UO3–CO2–H2O system. Geochim Cosmochim Acta 64:2185–2197

    Article  Google Scholar 

  • Fayek M, Harrison TM, Ewing RC, Grove M, Coath CD (2002) O and Pb isotopic analyses of uranium minerals by ion microprobe and U–Pb ages from the Cigar Lake Deposit. Chem Geol 185:205–225

    Article  Google Scholar 

  • Fayek M, Ren M, Goodell P, Dobson P, Saucedo AL, Kelts A, Utsunomiya S, Ewing RC, Riciputi LR, Reyes I (2006) Paragenesis and geochronology of the Nopal I uranium deposit, Mexico. 11th International High Level Radioactive Waste Management Conference Proc., Las Vegas, NV, pp. 55–62

  • Ferrari L, Valencia-Moreno M, Bryan S (2007) Magmatism and tectonics of the Sierra Madre Occidental and its relation with the evolution of the western margin of North America. Geological Society of America Special Paper 422

  • Finch RJ, Ewing RC (1992) Corrosion of uraninite under oxidizing conditions. J Nucl Mater 190:133–156

    Article  Google Scholar 

  • Gauthier-Lafaye F, Weber F (2003) Natural nuclear fission reactors: time constraints for occurrence, and their relation to uranium and manganese deposits and to the evolution of the atmosphere. Precambrian Res 120:81–100

    Article  Google Scholar 

  • Goodell PC (1981) Geology of the Peña Blanca uranium deposits, Chihuahua, Mexico. In: Goodell PC, Waters A (eds) Uranium in volcanic and volcanoclastic rocks, vol 13. AAPG, El Paso, pp 275–291

    Google Scholar 

  • Goodell PC (1985) Chihuahua City Uranium Province, Chihuahua, Mexico. In: Uranium deposits in volcanic rocks. IAEA Proc. Tech Comm Meeting, El Paso, pp. 97–124

  • Goodell PC, Trentham R, Carraway K (1979) Geologic setting of the Peña Blanca uranium deposits, Chihuahua, Mexico. In: Henry CD, Walton AD (eds) Formation of uranium ore by diagenesis of volcanic sediments. US Department of Energy, Washington, DC, Open-File Rept GJBX-22, v.79

    Google Scholar 

  • Goodell PC, Lueth VW, Peters L, Reyes-Cortes I (1999) Giant jarosite crystals from the Peña Blanca uranium district, Chihuahua, Mexico. Mineral Rec 30:85

    Google Scholar 

  • Henry CD, Aranda-Gomez JJ (1992) The real southern Basin and Range: mid- to late Cenozoic extension in Mexico. Geology 20:701–704

    Article  Google Scholar 

  • Henry CD, Price JG (1986) Early Basin and Range development in Trans-Pecos Texas and adjacent Chihuahua: magmatism and orientation, timing and style of extension. J Geophys Res 91:6213–6224

    Article  Google Scholar 

  • I.A.E.A. (2009) World distribution of uranium deposits (UDEPO) with uranium deposit classification, I.A.E.A.-TECDOC-1629, 120pp with CD

  • IAEA/WMO (2006) Global network of isotopes in precipitation. The GNIP database. Accessible at: http://www.iaea.org/water. Accessed Feb 2012

  • Ildefonse P, Muller JP, Clozel B, Calas G (1990) Study of two alteration systems as analogues of radionuclide release and migration. Eng Geol 29:413–439

    Article  Google Scholar 

  • Janeczek J, Ewing RC (1995) Mechanisms of lead release from uraninite in natural fission reactors in Gabon. Geochim Cosmochim Acta 59:1917–1931

    Article  Google Scholar 

  • Janeczek J, Ewing RC, Oversby VM, Werme LO (1996) Uraninite and UO2 in spent nuclear fuel: a comparison. J Nucl Mater 238:121–130

    Article  Google Scholar 

  • Keller GR, Cather SM (1994) Introduction. In: Keller GR, Cather SM (eds) Basins of the Rio Grande Rift: structure, stratigraphy, and tectonic setting. Geological Society of America, Boulder, pp 1–3, Special Paper 291

    Google Scholar 

  • Lexa J, Štohl J, Konečný V (1999) The Banská Štiavnica ore district: relationship between metallogenetic processes and the geological evolution of a stratovolcano. Miner Deposita 34:639–654

    Article  Google Scholar 

  • Lovley DR, Philips EJP (1992) Reduction of uranium by Desulfovibrio desulfuricans. J Appl Environ Microbiol 58:850–856

    Google Scholar 

  • Lueth VW, Rye RO, Peters L (2005) “Sour gas” hydrothermal jarosite: ancient to modern acidsulfate mineralization in the southern Rio Grande Rift. Chem Geol 215:339–360

    Article  Google Scholar 

  • Magonthier MC (1987) Relations entre les minéralisations d’uranium de la Sierra Pefia Blanca (Mexique) et les ignimbrites porteuses. Bull Mineral 110:305–317

    Google Scholar 

  • McDowell FW, Clabaugh SE (1979) Ignimbrites of the Sierra Madre Occidental and their relation to the tectonic history of Western Mexico. Geol Soc Am Bull 180:113–124

    Google Scholar 

  • Min M, Xu H, Chen J, Fayek M (2005) Evidence of uranium biomineralization in sandstone-hosted roll-front uranium deposits, northwestern China. Ore Geol Rev 26:187–197

    Article  Google Scholar 

  • Muller JP, Ildefonse P, Calas G (1990) Paramagnetic defect centers in hydrothermal kaolinite from an altered tuff in the Nopal uranium deposit, Chihuahua, Mexico. Clays Clay Miner 38:600–608

    Article  Google Scholar 

  • Murphy WM (2000) Natural analogs and performance assessment for geologic disposal of nuclear waste. Mater Res Soc Symp Proc 608:533–544

    Article  Google Scholar 

  • Nieto-Samaniego AF, Ferrari L, Alaniz-Alvarez SA, Labarthe-Hernandez G, Rosas-Elguera J (1999) Variations in Cenozoic extension and volcanism across the southern Sierra Madre Occidental province, Mexico. Geol Soc Am Bull 111:347–363

    Article  Google Scholar 

  • Northrop HR, Goldhaber MB (1990) Genesis of the tabular-type vanadium uranium deposits of the Henry Basin, Utah. Econ Geol 85:215–216

    Article  Google Scholar 

  • Pearcy EC, Prikryl JD, Murphy WM, Leslie BW (1994) Alteration of uraninite from the Nopal I deposit, Peña Blanca District, Chihuahua, Mexico, compared to degradation of spent nuclear fuel in the proposed US high-level nuclear waste repository at Yucca Mountain, Nevada. Appl Geochem 9:713–732

    Article  Google Scholar 

  • Pickett DA, Murphy WM (1997) Isotopic constraints on radionuclide transport at Peña Blanca. 7th EC Natural Analogue Working Group Meeting. In: Von Maravic H, Smellie J, (eds) EUR17851 European Commission, Luxembourg p. 113–122

  • Prikryl JD, Picket DA, Murphy WM, Pearcy EC (1997) Migration behaviour of naturally occurring radionuclides at the Nopal I uranium deposit, Chihuahua, Mexico. J Contam Hydrol 26:61–69

    Article  Google Scholar 

  • Rees CE (1973) A steady-state model for sulphur isotope fractionation in bacterial reduction processes. Geochim Cosmochim Acta 37:1141–1162

    Article  Google Scholar 

  • Reyes-Cortés IA (1997) Geologic Studies in the Sierra de Peña Blanca, Chihuahua, Mexico. Unpublished PhD thesis, El Paso, University of Texas, p. 344

  • Reyes-Cortés M, Fuentes-Cobas L, Torres-Moye E, Esparza-Ponce H, Montero-Cabrera ME (2010) Uranium minerals from the San Marcos District, Chihuahua, Mexico. Miner Pet 99:121–132

    Article  Google Scholar 

  • Riciputi LR, Cole DR, Machel HG (1996) Sulfide formation in reservoir carbonates of the Devonian Nisku formation, Alberta, Canada: an ion microprobe study. Geochim Cosmochim Acta 60:325–336

    Article  Google Scholar 

  • Riciputi LR, Paterson BA, Ripperdan RL (1998) Measurement of light stable isotope ratios by SIMS: matrix effects for oxygen, carbon, and sulfur isotopes in minerals. Int J Mass Spectrom 178:81–112

    Article  Google Scholar 

  • Rosholt JN, Noble DC (1969) Loss of uranium from crystallized silicic volcanic rocks. Earth Planet Sci Lett 6:268–270

    Article  Google Scholar 

  • Saucedo A (2011) Geochronology of uranium minerals from the Nopal I uranium deposit, Chihuahua, Mexico. Unpublished, MSc thesis, University of Manitoba

  • Seager WR, Shapiqullah M, Hawley JW, Marvin R (1984) New dates from basalts and the evolution of the southern Rio Grande Rift. Geol Soc Am Bull 95:87–99

    Article  Google Scholar 

  • Seal RR (2006) Sulfur isotope geochemistry of sulphide minerals. In: Vaughan DJ (ed) Sulfide mineralogy and geochemistry, vol 61. Mineralogical Society of America, Washington, DC, pp 633–677

    Google Scholar 

  • Sheppard SMF, Gilg HA (1996) Stable isotope geochemistry of clay minerals. Clay Miner 31:1–24

    Article  Google Scholar 

  • Southam G, Donald R, Rostad A, Brock C (2001) Pyrite discs in coal: evidence for fossilized bacterial colonies. Geology 29:47–50

    Article  Google Scholar 

  • Stege BR (1979) Stratigraphy and significance of the carbonates of the Peña Blanca Uranium District, Chihuahua, Mexico. MSc Thesis, Univ. Texas, El Paso

  • Suzuki Y, Banfield JF (1999) The geomicrobiology of uranium. Rev Mineral 38:393–432

    Google Scholar 

  • Tardy M, Blanchet R, Zimmermann M (1989) Les lineaments du Texas et Caltam entre Cordillères Américaines et Sierras Madres mexicaines: nature, origin et évolution. Bull Cent Rech Explor Elf Aquitaine 13:219–227

    Google Scholar 

  • USGS (2004) Shuttle radar topography mission, global land cover facility. University of Maryland, College Park

    Google Scholar 

  • Wenrich KJ, Modreski PJ, Zielinski ZA, Seeley JL (1982) Margaritasite: a new mineral of hydrothermal origin from the Peña Blanca Uranium district, Mexico. Am Mineral 67:1273–1289

    Google Scholar 

Download references

Acknowledgments

The authors thank A.L Saucedo (University of Manitoba), P. Goodell (University of Texas, El Paso), I. Reyes-Cortes, and R. de la Garza (Facultad de Ingeniería, Universidad Autónoma de Chihuahua) for fruitful discussions, comments, and assistance on the field. We are also indebted to Manuel Pubellier, David Thomas, and Virgil Lueth for valuable comments on the manuscript. This work was partially funded by an NSERC Discovery and CFI Grant to Fayek and the Canada Research Chair program. This manuscript greatly benefitted from the thorough reviews by Dr. Aleshyn and Associate Editor Michel Cuney and comments by the Editor Bernd Lehmann.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samuel Angiboust.

Additional information

Editorial handling: M. Cuney

Electronic supplementary material

Below is the link to the electronic supplementary material.

Appendix 1

Sulfur and carbon isotopic composition of sulfides and organic carbon, respectively (DOC 73 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Angiboust, S., Fayek, M., Power, I.M. et al. Structural and biological control of the Cenozoic epithermal uranium concentrations from the Sierra Peña Blanca, Mexico. Miner Deposita 47, 859–874 (2012). https://doi.org/10.1007/s00126-012-0408-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00126-012-0408-5

Keywords

Navigation