Skip to main content

Advertisement

Log in

Macrophage mTORC1 disruption reduces inflammation and insulin resistance in obese mice

  • Article
  • Published:
Diabetologia Aims and scope Submit manuscript

Abstract

Aims/hypothesis

Inflammatory factors secreted by macrophages play an important role in obesity-related insulin resistance. Being at the crossroads of a nutrient–hormonal signalling network, the mammalian target of rapamycin complex 1 (mTORC1) controls important functions in the regulation of energy balance and peripheral metabolism. However, the role of macrophage mTORC1 in insulin resistance is still unclear. In the current study, we investigated the physiological role of macrophage mTORC1 in regulating inflammation and insulin sensitivity.

Methods

We generated mice deficient in the regulatory associated protein of mTOR (Raptor) in macrophages, by crossing Raptor (also known as Rptor) floxed mice (Raptor flox/flox) with mice expressing Cre recombinase under the control of the Lysm-Cre promoter (Mac-Raptor KO). We fed mice chow or high-fat diet (HFD) and assessed insulin sensitivity in liver, muscle and adipose tissue. Subsequently, we measured inflammatory gene expression in liver and adipose tissue and investigated the role of Raptor deficiency in the regulation of inflammatory responses in peritoneal macrophages from HFD-fed mice or in palmitic acid-stimulated bone marrow-derived macrophages (BMDMs).

Results

Mac-Raptor KO mice fed HFD had improved systemic insulin sensitivity compared with Raptor flox/flox mice. Macrophage Raptor deficiency reduced inflammatory gene expression in liver and adipose tissue, fatty liver and adipose tissue macrophage content in response to HFD. In peritoneal macrophages from mice fed with an HFD for 12 weeks, macrophage Raptor deficiency decreased inflammatory gene expression, through attenuation of the inactivation of Akt and subsequent inhibition of the inositol-requiring element 1α/clun NH2-terminal kinase–nuclear factor kappa-light-chain-enhancer of activated B cells (IRE1α/JNK/NFκB) pathways. Similarly, mTOR inhibition as a result of Raptor deficiency or rapamycin treatment decreased palmitic acid-induced inflammatory gene expression in BMDMs in vitro.

Conclusions/interpretation

The disruption of mTORC1 signalling in macrophages protects mice against inflammation and insulin resistance potentially by inhibiting HFD- and palmitic acid-induced IRE1α/JNK/NFκB pathway activation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

ATF6:

Activating transcription factor 6

ATM:

Adipose tissue macrophage

BMDM:

Bone marrow-derived macrophage

CD:

Chow diet

ConA:

Concanavalin A

DIO:

Diet-induced obesity

eIF2α:

Eukaryotic translation initiation factor 2α

ER:

Endoplasmic reticulum

HFD:

High-fat diet

IPGTT:

Intraperitoneal glucose tolerance test

IPITT:

Intraperitoneal insulin tolerance test

IRE1α:

Inositol-requiring element 1α

JNK:

cJun NH2-terminal kinase

mTORC1/2:

Mammalian target of rapamycin complex 1/2

NF-κB:

Nuclear factor κB

NMR:

Nuclear magnetic resonance

PERK:

RNA-dependent protein kinase-like ER kinase

p70S6k:

p70 S6 kinase

Raptor:

Regulatory associated protein of mTOR

SFA:

Saturated fatty acid

TG:

Triacylglycerol

TLR:

Toll-like receptor

UPR:

Unfolded protein response

WAT:

White adipose tissue

XBP1:

X box binding protein 1

References

  1. Hotamisligil GS, Shargill NS, Spiegelman BM (1993) Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance. Science 259:87–91

    Article  PubMed  CAS  Google Scholar 

  2. Flegal KM, Graubard BI, Williamson DF, Gail MH (2007) Cause-specific excess deaths associated with underweight, overweight, and obesity. JAMA 298:2028–2037

    Article  PubMed  CAS  Google Scholar 

  3. Ozcan U, Cao Q, Yilmaz E et al (2004) Endoplasmic reticulum stress links obesity, insulin action, and type 2 diabetes. Science 306:457–461

    Article  PubMed  Google Scholar 

  4. Park SW, Zhou Y, Lee J et al (2010) The regulatory subunits of PI3K, p85alpha and p85beta, interact with XBP-1 and increase its nuclear translocation. Nat Med 16:429–437

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  5. Ozcan L, Ergin AS, Lu A et al (2009) Endoplasmic reticulum stress plays a central role in development of leptin resistance. Cell Metab 9:35–51

    Article  PubMed  CAS  Google Scholar 

  6. Obstfeld AE, Sugaru E, Thearle M et al (2010) C-C chemokine receptor 2 (CCR2) regulates the hepatic recruitment of myeloid cells that promote obesity-induced hepatic steatosis. Diabetes 59:916–925

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  7. Qatanani M, Lazar MA (2007) Mechanisms of obesity-associated insulin resistance: many choices on the menu. Genes Dev 21:1443–1455

    Article  PubMed  CAS  Google Scholar 

  8. Weisberg SP, McCann D, Desai M, Rosenbaum M, Leibel RL, Ferrante AW Jr (2003) Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest 112:1796–1808

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  9. Han MS, Jung DY, Morel C et al (2013) JNK expression by macrophages promotes obesity-induced insulin resistance and inflammation. Science 339:218–222

    Article  PubMed  CAS  Google Scholar 

  10. Solinas G, Vilcu C, Neels JG et al (2007) JNK1 in hematopoietically derived cells contributes to diet-induced inflammation and insulin resistance without affecting obesity. Cell Metab 6:386–397

    Article  PubMed  CAS  Google Scholar 

  11. Boden G (2002) Interaction between free fatty acids and glucose metabolism. Curr Opin Clin Nutr Metab Care 5:545–549

    Article  PubMed  CAS  Google Scholar 

  12. Nguyen MT, Favelyukis S, Nguyen AK et al (2007) A subpopulation of macrophages infiltrates hypertrophic adipose tissue and is activated by free fatty acids via Toll-like receptors 2 and 4 and JNK-dependent pathways. J Biol Chem 282:35279–35292

    Article  PubMed  CAS  Google Scholar 

  13. Seimon TA, Nadolski MJ, Liao X et al (2010) Atherogenic lipids and lipoproteins trigger CD36-TLR2-dependent apoptosis in macrophages undergoing endoplasmic reticulum stress. Cell Metab 12:467–482

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  14. Erbay E, Babaev VR, Mayers JR et al (2009) Reducing endoplasmic reticulum stress through a macrophage lipid chaperone alleviates atherosclerosis. Nat Med 15:1383–1391

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  15. Kapahi P, Chen D, Rogers AN et al (2010) With TOR, less is more: a key role for the conserved nutrient-sensing TOR pathway in aging. Cell Metab 11:453–465

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  16. Wullschleger S, Loewith R, Hall MN (2006) TOR signaling in growth and metabolism. Cell 124:471–484

    Article  PubMed  CAS  Google Scholar 

  17. Ozcan U, Ozcan L, Yilmaz E et al (2008) Loss of the tuberous sclerosis complex tumor suppressors triggers the unfolded protein response to regulate insulin signaling and apoptosis. Mol Cell 29:541–551

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  18. Ai D, Baez JM, Jiang H et al (2012) Activation of ER stress and mTORC1 suppresses hepatic sortilin-1 levels in obese mice. J Clin Invest 122:1677–1687

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  19. Hotamisligil GS (2010) Endoplasmic reticulum stress and the inflammatory basis of metabolic disease. Cell 140:900–917

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  20. Jakubzick C, Bogunovic M, Bonito AJ, Kuan EL, Merad M, Randolph GJ (2008) Lymph-migrating, tissue-derived dendritic cells are minor constituents within steady-state lymph nodes. J Exp Med 205:2839–2850

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  21. Manning BD (2004) Balancing Akt with S6K: implications for both metabolic diseases and tumorigenesis. J Cell Biol 167:399–403

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  22. Tremblay F, Brule S, Hee Um S et al (2007) Identification of IRS-1 Ser-1101 as a target of S6K1 in nutrient- and obesity-induced insulin resistance. Proc Natl Acad Sci U S A 104:14056–14061

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  23. Lumeng CN, Bodzin JL, Saltiel AR (2007) Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J Clin Invest 117:175–184

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  24. Byles V, Covarrubias AJ, Ben-Sahra I et al (2013) The TSC-mTOR pathway regulates macrophage polarization. Nat Commun 4:2834

    Article  PubMed  Google Scholar 

  25. Zhang HH, Lipovsky AI, Dibble CC, Sahin M, Manning BD (2006) S6K1 regulates GSK3 under conditions of mTOR-dependent feedback inhibition of Akt. Mol Cell 24:185–197

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  26. Kim JK (2006) Fat uses a TOLL-road to connect inflammation and diabetes. Cell Metab 4:417–419

    Article  PubMed  CAS  Google Scholar 

  27. Shi H, Kokoeva MV, Inouye K, Tzameli I, Yin H, Flier JS (2006) TLR4 links innate immunity and fatty acid-induced insulin resistance. J Clin Invest 116:3015–3025

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  28. Sabio G, Davis RJ (2010) cJun NH2-terminal kinase 1 (JNK1): roles in metabolic regulation of insulin resistance. Trends Biochem Sci 35:490–496

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  29. Laplante M, Sabatini DM (2009) mTOR signaling at a glance. J Cell Sci 122:3589–3594

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  30. Weichhart T, Costantino G, Poglitsch M et al (2008) The TSC-mTOR signaling pathway regulates the innate inflammatory response. Immunity 29:565–577

    Article  PubMed  CAS  Google Scholar 

  31. Weichhart T, Haidinger M, Katholnig K et al (2011) Inhibition of mTOR blocks the anti-inflammatory effects of glucocorticoids in myeloid immune cells. Blood 117:4273–4283

    Article  PubMed  CAS  Google Scholar 

  32. Katholnig K, Kaltenecker CC, Hayakawa H et al (2013) p38alpha senses environmental stress to control innate immune responses via mechanistic target of rapamycin. J Immunol 190:1519–1527

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  33. Weichhart T, Saemann MD (2009) The multiple facets of mTOR in immunity. Trends Immunol 30:218–226

    Article  PubMed  CAS  Google Scholar 

  34. Sarbassov DD, Ali SM, Sengupta S et al (2006) Prolonged rapamycin treatment inhibits mTORC2 assembly and Akt/PKB. Mol Cell 22:159–168

    Article  PubMed  CAS  Google Scholar 

  35. Hu P, Han Z, Couvillon AD, Kaufman RJ, Exton JH (2006) Autocrine tumor necrosis factor alpha links endoplasmic reticulum stress to the membrane death receptor pathway through IRE1alpha-mediated NF-kappaB activation and down-regulation of TRAF2 expression. Mol Cell Biol 26:3071–3084

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  36. Kato H, Nakajima S, Saito Y, Takahashi S, Katoh R, Kitamura M (2012) mTORC1 serves ER stress-triggered apoptosis via selective activation of the IRE1-JNK pathway. Cell Death Differ 19:310–320

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  37. Hetz C, Bernasconi P, Fisher J et al (2006) Proapoptotic BAX and BAK modulate the unfolded protein response by a direct interaction with IRE1alpha. Science 312:572–576

    Article  PubMed  CAS  Google Scholar 

  38. Gardai SJ, Hildeman DA, Frankel SK et al (2004) Phosphorylation of Bax Ser184 by Akt regulates its activity and apoptosis in neutrophils. J Biol Chem 279:21085–21095

    Article  PubMed  CAS  Google Scholar 

  39. Zeng L, Liu YP, Sha H, Chen H, Qi L, Smith JA (2010) XBP-1 couples endoplasmic reticulum stress to augmented IFN-beta induction via a cis-acting enhancer in macrophages. J Immunol 185:2324–2330

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  40. Martinon F, Chen X, Lee AH, Glimcher LH (2010) TLR activation of the transcription factor XBP1 regulates innate immune responses in macrophages. Nat Immunol 11:411–418

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  41. Chen WQ, Zhong L, Zhang L et al (2009) Oral rapamycin attenuates inflammation and enhances stability of atherosclerotic plaques in rabbits independent of serum lipid levels. Br J Pharmacol 156:941–951

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  42. Lamming DW, Ye L, Katajisto P et al (2012) Rapamycin-induced insulin resistance is mediated by mTORC2 loss and uncoupled from longevity. Science 335:1638–1643

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  43. Ai D, Chen C, Han S et al (2012) Regulation of hepatic LDL receptors by mTORC1 and PCSK9 in mice. J Clin Invest 122:1262–1270

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank A. Tall, Columbia University, New York, NY, USA, for his advice and help on experimental design and manuscript writing.

Funding

DA is supported by the National Natural Science Foundation of China (Nos 81322006 and 81370396). YZ is supported by the Major National Basic Research Grant of China (No. 2010CB912504). MW is supported by The Netherlands Organization of Scientific Research (NWO VENI – grant 916.11.072).

Duality of interest

The authors declare that there is no duality of interest associated with this manuscript.

Contribution statement

HJ contributed to the concept and design, data acquisition, analysis and interpretation and drafting of the article. MW contributed to the concept and design, data acquisition and revision of the article. CW and YZ contributed to the data acquisition and analysis and revision of the article. DA contributed to the concept and design, data acquisition, analysis and interpretation of data and revision of the article. DA is the guarantor of the work. All authors approved the final version.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ding Ai.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM Fig. 1

(PDF 163 kb)

ESM Fig. 2

(PDF 366 kb)

ESM Methods

(PDF 86 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, H., Westerterp, M., Wang, C. et al. Macrophage mTORC1 disruption reduces inflammation and insulin resistance in obese mice. Diabetologia 57, 2393–2404 (2014). https://doi.org/10.1007/s00125-014-3350-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00125-014-3350-5

Keywords

Navigation