Skip to main content
Log in

QTL analysis of cotton fiber length in advanced backcross populations derived from a cross between Gossypium hirsutum and G. mustelinum

  • Original Article
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

QTLs for fiber length mapped in three generations of advanced backcross populations derived from crossing Gossypium hirsutum and Gossypium mustelinum showed opportunities to improve elite cottons by introgression from wild relatives.

Abstract

The molecular basis of cotton fiber length in crosses between Gossypium hirsutum and Gossypium mustelinum was dissected using 21 BC3F2 and 12 corresponding BC3F2:3 and BC3F2:4 families. Sixty-five quantitative trait loci (QTLs) were detected by one-way analysis of variance. The QTL numbers detected for upper-half mean length (UHM), fiber uniformity index (UI), and short fiber content (SFC) were 19, 20, and 26 respectively. Twenty-three of the 65 QTLs could be detected at least twice near adjacent markers in the same family or near the same markers across different families/generations, and 32 QTLs were detected in both one-way variance analyses and mixed model-based composite interval mapping. G. mustelinum alleles increased UHM and UI and decreased SFC for five, one, and one QTLs, respectively. In addition to the main-effect QTLs, 17 epistatic QTLs were detected which helped to elucidate the genetic basis of cotton fiber length. Significant among-family genotypic effects were detected at 18, 16, and 16 loci for UHM, UI, and SFC, respectively. Six, two, and two loci showed genotype × family interaction for UHM, UI and SFC, respectively, illustrating complexities that might be faced in introgression of exotic germplasm into cultivated cotton. Co-location of many QTLs for UHM, UI, and SFC accounted for correlations among these traits, and selection of these QTLs may improve the three traits simultaneously. The simple sequence repeat (SSR) markers associated with G. mustelinum QTLs will assist breeders in transferring and maintaining valuable traits from this exotic source during cultivar development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alves M, Barroso P, Ciampi A, Hoffmann L, Azevedo V, Cavalcante U (2013) Diversity and genetic structure among subpopulations of Gossypium mustelinum (Malvaceae). Genet Mol Res 12:597–609

    Article  CAS  PubMed  Google Scholar 

  • Borém A, Freire EC, Penna JCV, Barroso PAV (2003) Considerations about cotton gene escape in Brazil: a review. Crop Breed Appl Biotechnol 3:315–332

    Article  Google Scholar 

  • Burow MD, Starr JL, Park CH, Simpson CE, Paterson AH (2014) Introgression of homeologous quantitative trait loci (QTLs) for resistance to the root-knot nematode [Meloidogyne arenaria (Neal) Chitwood] in an advanced backcross-QTL population of peanut (Arachis hypogaea L.). Mol Breed 34:393–406

    Article  CAS  Google Scholar 

  • Chee P, Draye X, Jiang CX, Decanini L, Delmonte TA, Bredhauer R, Smith CW, Paterson AH (2005a) Molecular dissection of interspecific variation between Gossypium hirsutum and Gossypium barbadense (cotton) by a backcross-self approach: I. Fiber elongation. Theor Appl Genet 111:757–763

    Article  CAS  PubMed  Google Scholar 

  • Chee P, Draye X, Jiang CX, Decanini L, Delmonte TA, Bredhauer R, Smith CW, Paterson AH (2005b) Molecular dissection of phenotypic variation between Gossypium hirsutum and Gossypium barbadense (cotton) by a backcross-self approach: III. Fiber length. Theor Appl Genet 111:772–781

    Article  CAS  PubMed  Google Scholar 

  • Chen H, Khan MKR, Zhou Z, Wang X, Cai X, Ilyas MK, Wang C, Wang Y, Li Y, Liu F, Wang K (2015) A high-density SSR genetic map constructed from a F2 population of Gossypium hirsutum and Gossypium darwinii. Gene 574:273–286

    Article  CAS  PubMed  Google Scholar 

  • Draye X, Chee P, Jiang CX, Decanini L, Delmonte TA, Bredhauer R, Smith CW, Paterson AH (2005) Molecular dissection of interspecific variation between Gossypium hirsutum and G. barbadense (cotton) by a backcross-self approach: II. Fiber fineness. Theor Appl Genet 111:764–771

    Article  CAS  PubMed  Google Scholar 

  • Fulop D, Ranjan A, Ofner I, Covington MF, Chitwood DH, West D, Ichihashi Y, Headland L, Zamir D, Maloof JN, Sinha NR (2016) A new advanced backcross tomato population enables high resolution leaf QTL mapping and gene identification. G3-Genes Genom Genet 6:3169–3184

    Google Scholar 

  • Haas M, Menke J, Chao S, Steffenson BJ (2016) Mapping quantitative trait loci conferring resistance to a widely virulent isolate of Cochliobolus sativus in wild barley accession PI 466423. Theor Appl Genet 129:1–12

    Article  Google Scholar 

  • Hou MY, Cai CP, Zhang SW, Guo WZ, Zhang TZ, Zhou BL (2013) Construction of microsatellite-based linkage map and mapping of nectarilessness and hairiness genes in Gossypium tomentosum. J Genet 92:445–459

    Article  CAS  PubMed  Google Scholar 

  • Jiang CX, Wright RJ, El-Zik KM, Paterson AH (1998) Polyploid formation created unique avenues for response to selection in Gossypium (cotton). Proc Natl Acad Sci USA 95:4419–4424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kalladan R, Worch S, Rolletschek H, Harshavardhan VT, Kuntze L, Seiler C, Sreenivasulu N, Roder MS (2013) Identification of quantitative trait loci contributing to yield and seed quality parameters under terminal drought in barley advanced backcross lines. Mol Breed 32:71–90

    Article  Google Scholar 

  • Khan MKR, Chen H, Zhou Z, Ilyas MK, Wang X, Cai X, Wang C, Liu F, Wang K (2016) Genome wide SSR high density genetic map construction from an interspecific cross of Gossypium hirsutum × Gossypium tomentosum. Front Plant Sci 7:436

    PubMed  PubMed Central  Google Scholar 

  • Kim SM, Suh JP, Qin Y, Noh TH, Reinke RF, Jena KK (2015) Identification and fine-mapping of a new resistance gene, Xa40, conferring resistance to bacterial blight races in rice (Oryza sativa L.). Theor Appl Genet 128:1933–1943

    Article  CAS  PubMed  Google Scholar 

  • Kinkade MP, Foolad MR (2013) Validation and fine mapping of lyc12.1, a QTL for increased tomato fruit lycopene content. Theor Appl Genet 126:2163–2175

    Article  CAS  PubMed  Google Scholar 

  • Kroymann J, Mitchell-Olds T (2005) Epistasis and balanced polymorphism influencing complex trait variation. Nature 435:95–98

    Article  CAS  PubMed  Google Scholar 

  • Kuang XQ, Yu CW (2015) Generating cotton fiber length probability density function from fiber length parameters by finite mixture model. J Text I 106:655–662

    Article  Google Scholar 

  • Lacape JM et al (2010) Meta-analysis of cotton fiber quality QTLs across diverse environments in a Gossypium hirsutum x G. barbadense RIL population. BMC Plant Biol 10:132

    Article  PubMed  PubMed Central  Google Scholar 

  • Lawrence CA (2003) Fundamentals of spun yarn technology. CRC Press, Boca Raton

    Book  Google Scholar 

  • McCouch S, Cho Y, Yano M, Paul E, Blinstrub M, Morishima H, Kinoshita T (1997) Report on QTL nomenclature. Rice Genet Newsl 14:11

    Google Scholar 

  • Nagata K et al (2015) Advanced backcross QTL analysis reveals complicated genetic control of rice grain shape in a japonica x indica cross. Breed Sci 65:308–318

    Article  PubMed  PubMed Central  Google Scholar 

  • Naz AA, Klaus M, Pillen K, Leon J (2015) Genetic analysis and detection of new QTL alleles for Septoria tritici blotch resistance using two advanced backcross wheat populations. Plant Breed 134:514–519

    Article  CAS  Google Scholar 

  • Paterson AH, Deverna JW, Lanini B, Tanksley SD (1990) Fine mapping of quantitative trait loci using selected overlapping recombinant chromosomes, in an interspecies cross of tomato. Genetics 124:735–742

    CAS  PubMed  PubMed Central  Google Scholar 

  • Paterson AH et al (2004) Reducing the genetic vulnerability of cotton. Crop Sci 44:1900–1901

    Article  Google Scholar 

  • Paterson AH et al (2012) Repeated polyploidization of Gossypium genomes and the evolution of spinnable cotton fibres. Nature 492:423–427

    Article  CAS  PubMed  Google Scholar 

  • Rong JK et al (2004) A 3347-locus genetic recombination map of sequence-tagged sites reveals features of genome organization, transmission and evolution of cotton (Gossypium). Genetics 166:389–417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Said JI, Song M, Wang H, Lin Z, Zhang X, Fang DD, Zhang J (2015) A comparative meta-analysis of QTL between intraspecific Gossypium hirsutum and interspecific G. hirsutum × G. barbadense populations. Mol Genet Genomics 290:1003–1025

    Article  CAS  PubMed  Google Scholar 

  • SAS Institute (1999) SAS/STAT user’s guide, version 8, vol 2. SAS Institute, Cary

    Google Scholar 

  • Self SG, Liang K-Y (1987) Asymptotic properties of maximum likelihood estimators and likelihood ratio tests under nonstandard conditions. J Am Stat Assoc 82:605–610

    Article  Google Scholar 

  • Shi YZ et al (2015) Constructing a high-density linkage map for Gossypium hirsutum x Gossypium barbadense and identifying QTLs for lint percentage. J Integr Plant Biol 57:450–467

    Article  CAS  PubMed  Google Scholar 

  • Swamy BPM, Kaladhar K, Rani NS, Prasad GSV, Viraktamath BC, Reddy GA, Sarla N (2012) QTL analysis for grain quality traits in 2 BC2F2 populations derived from crosses between Oryza sativa cv Swarna and 2 accessions of O. nivara. J Hered 103:442–452

    Article  CAS  PubMed  Google Scholar 

  • Tang SY et al (2015) Construction of genetic map and QTL analysis of fiber quality traits for Upland cotton (Gossypium hirsutum L.). Euphytica 201:195–213

    Article  CAS  Google Scholar 

  • Tanksley S, Nelson J (1996) Advanced backcross QTL analysis: a method for the simultaneous discovery and transfer of valuable QTLs from unadapted germplasm into elite breeding lines. Theor Appl Genet 92:191–203

    Article  CAS  PubMed  Google Scholar 

  • Testore F, Minero G (1988) A study of the fundamental parameters of some fancy yarns. J Text I 79:606–619

    Article  Google Scholar 

  • Trachsel S, Sun D, SanVicente FM, Zheng H, Atlin GN, Suarez EA, Babu R, Zhang X (2016) Identification of QTL for early vigor and stay-green conferring tolerance to drought in two connected advanced backcross populations in tropical maize (Zea mays L.). PLoS ONE 11(3):e0149636

    Article  PubMed  PubMed Central  Google Scholar 

  • van der Knaap E et al (2014) What lies beyond the eye: the molecular mechanisms regulating tomato fruit weight and shape. Front Plant Sci 5:227

    PubMed  PubMed Central  Google Scholar 

  • Waghmare VN, Rong JK, Rogers CJ, Pierce GJ, Wendel JF, Paterson AH (2005) Genetic mapping of a cross between Gossypium hirsutum (cotton) and the Hawaiian endemic, Gossypium tomentosum. Theor Appl Genet 111:665–676

    Article  CAS  PubMed  Google Scholar 

  • Wang B, Chee PW (2010) Application of advanced backcross quantitative trait locus (QTL) analysis in crop improvement. J Plant Breed Crop Sci 2:221–232

    CAS  Google Scholar 

  • Wang FR, Gong YC, Zhang CY, Liu GD, Wang LM, Xu ZZ, Zhang J (2011) Genetic effects of introgression genomic components from Sea Island cotton (Gossypium barbadense L.) on fiber related traits in upland cotton (G. hirsutum L.). Euphytica 181:41–53

    Article  Google Scholar 

  • Wang B, Nie YC, Lin ZX, Zhang XL, Liu JJ, Bai J (2012) Molecular diversity, genomic constitution, and QTL mapping of fiber quality by mapped SSRs in introgression lines derived from Gossypium hirsutum x G. darwinii Watt. Theor Appl Genet 125:1263–1274

    Article  PubMed  Google Scholar 

  • Wang XQ, Yu Y, Li W, Guo HL, Lin ZX, Zhang XL (2013) Association analysis of yield and fiber quality traits in Gossypium barbadense with SSRs and SRAPs. Genet Mol Res 12:3353–3362

    Article  CAS  PubMed  Google Scholar 

  • Wang B, Draye X, Zhang Z, Zhuang Z, May OL, Paterson AH, Chee PW (2016a) Advanced backcross QTL analysis of fiber elongation in a cross between Gossypium hirsutum and G. mustelinum. Crop Sci 56:1760–1768

    Article  Google Scholar 

  • Wang B, Liu L, Zhang D, Zhuang Z, Guo H, Qiao X, Wei L, Rong J, May OL, Paterson AH, Chee PW (2016b) A genetic map between Gossypium hirsutum and the Brazilian endemic G. mustelinum and its application to QTL mapping. G3-Genes Genomics Genet 6:1673–1685

    Google Scholar 

  • Wendel JF, Grover CE (2015) Taxonomy and evolution of the cotton genus, Gossypium. In: Fang DD, Percy RG (ed) Cotton, 2nd edn. American Society of Agronomy, Inc., Crop Science Society of America, Inc., and Soil Science Society of America, Inc, Madison.

    Google Scholar 

  • Wickneswari R, Bhuiyan MAR, Kalluvettankuzhy S, Lim LS, Thomson MJ, Narimah MK, Abdullah MZ (2012) Identification and validation of quantitative trait loci for agronomic traits in advanced backcross breeding lines derived from Oryza rufipogon x Oryza sativa cultivar MR219. Plant Mol Biol Rep 30:929–939

    Article  Google Scholar 

  • Yang J, Hu CC, Hu H, Yu RD, Xia Z, Ye XZ, Zhu J (2008) QTLNetwork: mapping and visualizing genetic architecture of complex traits in experimental populations. Bioinformatics 24:721–723

    Article  PubMed  Google Scholar 

  • Yu JW, Yu SX, Gore M, Wu M, Zhai HH, Li XL, Fan SL, Song MZ, Zhang JF (2013a) Identification of quantitative trait loci across interspecific F2, F2:3 and testcross populations for agronomic and fiber traits in tetraploid cotton. Euphytica 191:375–389

    Article  CAS  Google Scholar 

  • Yu JW, Zhang K, Li SY, Yu SX, Zhai HH, Wu M, Li XL, Fan SL, Song MZ, Yang DG, Li YH, Zhang JF (2013b) Mapping quantitative trait loci for lint yield and fiber quality across environments in a Gossypium hirsutum x Gossypium barbadense backcross inbred line population. Theor Appl Genet 126:275–287

    Article  PubMed  Google Scholar 

  • Yu J, Jung S, Cheng CH, Ficklin SP, Lee T, Zheng P, Jones D, Percy RG, Main D (2014a) CottonGen: a genomics, genetics and breeding database for cotton research. Nucleic Acids Res 42:D1229–D1236

    Article  CAS  PubMed  Google Scholar 

  • Yu JZ, Ulloa M, Hoffman SM, Kohel RJ, Pepper AE, Fang DD, Percy RG, Burke JJ (2014b) Mapping genomic loci for cotton plant architecture, yield components, and fiber properties in an interspecific (Gossypium hirsutum L. x G. barbadense L.) RIL population. Mol Genet Genomics 289:1347–1367

    Article  CAS  PubMed  Google Scholar 

  • Zhang HB, Li Y, Wang B, Chee PW (2008) Recent advances in cotton genomics. Int J Plant Genomics 2008:742304

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang ZS, Rong JK, Waghmare VN, Chee PW, May OL, Wright RJ, Gannaway JR, Paterson AH (2011) QTL alleles for improved fiber quality from a wild Hawaiian cotton, Gossypium tomentosum. Theor Appl Genet 123:1075–1088

    Article  PubMed  Google Scholar 

  • Zhang JF, Yu JW, Pei WF, Li XL, Said J, Song MZ, Sanogo S (2015a) Genetic analysis of Verticillium wilt resistance in a backcross inbred line population and a meta-analysis of quantitative trait loci for disease resistance in cotton. BMC Genomics 16:577

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang TZ, Hu Y, Jiang WK, Fang L, Guan XY, Chen JD, Zhang JB, Saski CA, Scheffler BE, Stelly DM, Hulse-Kemp AM, Wan Q, Liu BL, Liu CX, Wang S, Pan MQ, Wang YK, Wang DW, Ye WX, Chang LJ, Zhang WP, Song QX, Kirkbride RC, Chen XY, Dennis E, Llewellyn DJ, Peterson DG, Thaxton P, Jones DC, Wang Q, Xu XY, Zhang H, Wu HT, Zhou L, Mei GF, Chen SQ, Tian Y, Xiang D, Li XH, Ding J, Zuo QY, Tao LN, Liu YC, Li J, Lin Y, Hui YY, Cao ZS, Cai CP, Zhu XF, Jiang Z, Zhou BL, Guo WZ, Li RQ, Chen ZJ (2015b) Sequencing of allotetraploid cotton (Gossypium hirsutum L. acc. TM-1) provides a resource for fiber improvement. Nat Biotechnol 33:531–537

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We appreciate financial help from the National Science Foundation (PFI award IIP 0917856; AIR award IIP 1127755), Cotton Incorporated, and Key Research and Development Project of Jiangsu Province, China (Modern Agriculture, BE2015353). We thank Jennifer McCurdy for help in field work and Cornelia Lemke for technical assistance in the lab.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Andrew H. Paterson or Peng W. Chee.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Joshua A. Udall.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 298 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, B., Draye, X., Zhuang, Z. et al. QTL analysis of cotton fiber length in advanced backcross populations derived from a cross between Gossypium hirsutum and G. mustelinum . Theor Appl Genet 130, 1297–1308 (2017). https://doi.org/10.1007/s00122-017-2889-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-017-2889-1

Keywords

Navigation