Skip to main content
Log in

Identification of Pm58 from Aegilops tauschii

  • Original Article
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

A novel powdery mildew-resistance gene, designated Pm58, was introgressed directly from Aegilops tauschii to hexaploid wheat, mapped to chromosome 2DS, and confirmed to be effective under field conditions. Selectable KASP™ markers were developed for MAS.

Abstract

Powdery mildew caused by Blumeria graminis (DC.) f. sp. tritici (Bgt) remains a significant threat to wheat (Triticum aestivum L.) production. The rapid breakdown of race-specific resistance to Bgt reinforces the need to identify novel sources of resistance. The d-genome species, Aegilops tauschii, is an excellent source of disease resistance that is transferrable to T. aestivum. The powdery mildew-resistant Ae. tauschii accession TA1662 (2n = 2x = DD) was crossed directly with the susceptible hard white wheat line KS05HW14 (2n = 6x = AABBDD) followed by backcrossing to develop a population of 96 BC2F4 introgression lines (ILs). Genotyping-by-sequencing was used to develop a genome-wide genetic map that was anchored to the Ae. tauschii reference genome. A detached-leaf Bgt assay was used to screen BC2F4:6 ILs, and resistance was found to segregate as a single locus (χ = 2.0, P value = 0.157). The resistance gene, referred to as Pm58, mapped to chromosome 2DS. Pm58 was evaluated under field conditions in replicated trials in 2015 and 2016. In both years, a single QTL spanning the Pm58 locus was identified that reduced powdery mildew severity and explained 21% of field variation (P value < 0.01). KASP™ assays were developed from closely linked GBS-SNP markers, a refined genetic map was developed, and four markers that cosegregate with Pm58 were identified. This novel source of powdery mildew-resistance and closely linked genetic markers will support efforts to develop wheat varieties with powdery mildew resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Asad MA, Bai B, Lan CX, Yan J, Xia XC, Zhang Y, He ZH (2012) Molecular mapping of quantitative trait loci for adult-plant resistance to powdery mildew in Italian wheat cultivar Libellula. Crop Pasture Sci 63:539. doi:10.1071/CP12174

    Article  CAS  Google Scholar 

  • Bougot Y, Lemoine J, Pavoine MT, Guyomar'ch H, Gautier V, Muranty H, Barloy D (2006) A major QTL effect controlling resistance to powdery mildew in winter wheat at the adult plant stage. Plant Breed 125:550–556. doi:10.1111/j.1439-0523.2006.01308.x

    Article  CAS  Google Scholar 

  • Broman KW, Wu H, Sen S, Churchill GA (2003) R/qtl: QTL mapping in experimental crosses. Bioinformatics 19:889–890. doi:10.1093/bioinformatics/btg112

    Article  CAS  PubMed  Google Scholar 

  • Cowger C, Miranda L, Griffey C, Hall M, Murphy JP, Maxwell J (2012) Wheat powdery mildew. In: Sharma I (ed) Disease resistance in wheat. CAB International, Oxfordshire, pp 84–119

    Chapter  Google Scholar 

  • Cowger C, Parks R, Kosman E (2016) Structure and migration in U.S. Blumeria graminis f. sp. tritici populations. Phytopathology 106:295–304. doi:10.1094/PHYTO-03-15-0066-R

    Article  CAS  PubMed  Google Scholar 

  • Cox TS, Raupp WJ, Wilson DL, Gill BS, Leath S, Bockus WW, Browder LE (1992) Resistance to foliar diseases in a collection of Triticum tauschii germ plasm. Plant Dis 76:1061–1064

    Article  Google Scholar 

  • Gill BS, Raupp WJ (1987) Direct genetic transfers from Aegilops squarrosa L. to hexaploid wheat. Crop Sci 27:445–450

    Article  Google Scholar 

  • Hao Y, Parks R, Cowger C, Chen Z, Wang Y, Bland D, Murphy JP, Guedira M, Brown-Guedira G, Johnson J (2015) Molecular characterization of a new powdery mildew resistance gene Pm54 in soft red winter wheat. Theor Appl Genet 128:465–476. doi:10.1007/s00122-014-2445-1

    Article  CAS  PubMed  Google Scholar 

  • He R, Chang Z, Yang Z, Yuan Z, Zhan H, Zhang X, Liu J (2009) Inheritance and mapping of powdery mildew resistance gene Pm43 introgressed from Thinopyrum intermedium into wheat. Theor Appl Genet 118:1173–1180. doi:10.1007/s00122-009-0971-z

    Article  CAS  PubMed  Google Scholar 

  • Hoffstetter A, Cabrera A, Sneller C (2016) Identifying quantitative trait loci for economic traits in an elite soft red winter wheat population. Crop Sci 56:547–558. doi:10.2135/cropsci2015.06.0332

    Article  CAS  Google Scholar 

  • Jia J, Zhao S, Kong X, Li Y, Zhao G, He W, Appels R et al (2013) Aegilops tauschii draft genome sequence reveals a gene repertoire for wheat adaptation. Nature 496:91–95. doi:10.1038/nature12028

    Article  CAS  PubMed  Google Scholar 

  • Korzun V, Röder MS, Ganal MW, Worland AJ, Law CN (1998) Genetic analysis of the dwarfing gene (Rht8) in wheat. Part I. Molecular mapping of Rht8 on the short arm of chromosome 2D of bread wheat (Triticum aestivum L.). Theor Appl Genet 96:1104–1109. doi:10.1007/s001220050845

    Article  CAS  Google Scholar 

  • Lander ES, Botstein D (1989) Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121:185–199

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li T, Zhang Z, Hu Y, Duan X, Xin Z (2011) Identification and molecular mapping of a resistance gene to powdery mildew from the synthetic wheat line M53. J Appl Genet 52:137–143. doi:10.1007/s13353-010-0006-0

    Article  PubMed  Google Scholar 

  • Li Z, Lan C, He Z, Singh RP, Rosewarne GM, Chen X, Xia X (2014) Overview and application of QTL for adult plant resistance to leaf rust and powdery mildew in wheat. Crop Sci 54:1907–1925. doi:10.2135/cropsci2014.02.0162

    Article  Google Scholar 

  • Lillemo M, Asalf B, Singh RP, Huerta-Espino J, Chen XM, He ZH, Bjornstad A (2008) The adult plant rust resistance loci Lr34/Yr18 and Lr46/Yr29 are important determinants of partial resistance to powdery mildew in bread wheat line Saar. Theor Appl Genet 116:1155–1166. doi:10.1007/s00122-008-0743-1

    Article  CAS  PubMed  Google Scholar 

  • Liu W, Koo D-H, Xia Q, Li C, Bai F, Song Y, Friebe B, Gill BS (2017) Homoeologous recombination-based transfer and molecular cytogenetic mapping of powdery mildew-resistant gene Pm57 from Aegilops searsii into wheat. Theor Appl Genet. doi:10.1007/s00122-017-2855-y

    Google Scholar 

  • Lu F, Lipka AE, Glaubitz J, Elshire R, Cherney JH, Casler MD, Buckler ES, Costich DE (2013) Switchgrass genomic diversity, ploidy, and evolution: Novel insights from a network-based SNP discovery protocol. PLoS One 9(1):e1003215

    CAS  Google Scholar 

  • Lutz J, Hsam SLK, Limpert E, Zeller FJ (1994) Powdery mildew resistance in Aegilops tauschii Coss. and synthetic hexaploid wheats. Genet Resour Crop Evol 41:151–158. doi:10.1007/BF00051631

    Article  Google Scholar 

  • Lutz J, Hsam SLK, Limpert E, Zeller FJ (1995) Chromosomal location of powdery mildew resistance genes in Triticum aestivum L. (common wheat). 2. Genes Pm2 and Pm19 from Aegilops squarrosa L. Heredity (Edinb) 74:152–156. doi:10.1038/hdy.1995.22

    Article  Google Scholar 

  • Majka M, Kwiatek M, Belter J, Winiewska H (2016) Characterization of morphology and resistance to Blumeria graminis of winter triticale monosomic addition lines with chromosome 2D of Aegilops tauschii. Plant Cell Rep 35:2125–2135. doi:10.1007/s00299-016-2023-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McFadden ES, Sears ER (1944) The artificial synthesis of Triticum spelta. Rec Genet Soc Am 13:26–27.

    Google Scholar 

  • Mcintosh RA, Baker EP (1970) Cytogenetical studies in wheat IV. chromosome location and linkage studies involving the Pm2 locus for powdery mildew resistance. Euphytica 19:71–77

    Article  Google Scholar 

  • Miranda LM, Murphy JP, Marshall D, Leath S (2006) Pm34: a new powdery mildew resistance gene transferred from Aegilops tauschii Coss. to common wheat (Triticum aestivum L.). Theor Appl Genet 113:1497–1504. doi:10.1007/s00122-006-0397-9

    Article  CAS  PubMed  Google Scholar 

  • Miranda LM, Murphy JP, Marshall D, Cowger C, Leath S (2007) Chromosomal location of Pm35, a novel Aegilops tauschii derived powdery mildew resistance gene introgressed into common wheat (Triticum aestivum L.). Theor Appl Genet 114:1451–1456. doi:10.1007/s00122-007-0530-4

    Article  CAS  PubMed  Google Scholar 

  • Olson EL, Rouse MN, Pumphrey MO, Bowden RL, Gill BS, Poland JA (2013) Simultaneous transfer, introgression, and genomic localization of genes for resistance to stem rust race TTKSK (Ug99) from Aegilops tauschii to wheat. Theor Appl Genet 126:1179–1188. doi:10.1007/s00122-013-2045-5

    Article  CAS  PubMed  Google Scholar 

  • Parks R, Carbone I, Murphy JP, Marshall D, Cowger C (2008) Virulence structure of the eastern U.S. wheat powdery mildew population. Plant Dis 92:1074–1082. doi:10.1094/PDIS-92-7-1074

    Article  Google Scholar 

  • Poland JA, Brown PJ, Sorrells ME, Jannink J (2012) Development of high-density genetic maps for barley and wheat using novel two-enzyme genotyping-by-sequencing approach. PLoS One 7(2):e32253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Somers DJ, Isaac P, Edwards K (2004) A high-density microsatellite consensus map for bread wheat (Triticum aestivum L.). Theor Appl Genet 109:1105–1114. doi:10.1007/s00122-004-1740-7

    Article  CAS  PubMed  Google Scholar 

  • Stam P (1993) Construction of integrated genetic linkage maps by means of a new computer package: join map. Plant J 3(5):739–744

    Article  CAS  Google Scholar 

  • Sun X-L, Liu D, Zhang H-Q, Huo N-X, Zhou R-H, Jia J-Z (2006) Identification and mapping of two new genes conferring resistance to powdery mildew from Aegilops tauschii (Coss.) Schmal. J Integr Plant Biol 48:1204–1209. doi:10.1111/j.1672-9072.2006.00328.x

    Article  CAS  Google Scholar 

  • Zhang R, Sun B, Chen J, Cao A, Xing L, Feng Y, Lan C, Chen P (2016) Pm55, a developmental-stage and tissue-specific powdery mildew resistance gene introgressed from Dasypyrum villosum into common wheat. Theor Appl Genet 129:1975–1984. doi:10.1007/s00122-016-2753-8

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to Ryan Parks for planning and conducting detached-leaf assays, with technical assistance from Tyler Cole, Matt Hargrove, and Will Ostrom. We also want to express thanks to Lee Siler for managing field plots.

Author information

Authors and Affiliations

Authors

Contributions

A.T.W., C.C., and E.L.O designed research, and wrote and edited the manuscript; A.T.W. performed research; A.T.W., L.K.B., C.C., and E.L.O analyzed data; J.A.P. wrote a custom perl program for BLAST parsing.

Corresponding author

Correspondence to Eric L. Olson.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Aimin Zhang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 523 KB)

Supplementary material 2 (PDF 178 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wiersma, A.T., Pulman, J.A., Brown, L.K. et al. Identification of Pm58 from Aegilops tauschii . Theor Appl Genet 130, 1123–1133 (2017). https://doi.org/10.1007/s00122-017-2874-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-017-2874-8

Keywords

Navigation