Skip to main content
Log in

Development of the first consensus genetic map of intermediate wheatgrass (Thinopyrum intermedium) using genotyping-by-sequencing

  • Original Article
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

Development of the first consensus genetic map of intermediate wheatgrass gives insight into the genome and tools for molecular breeding.

Abstract

Intermediate wheatgrass (Thinopyrum intermedium) has been identified as a candidate for domestication and improvement as a perennial grain, forage, and biofuel crop and is actively being improved by several breeding programs. To accelerate this process using genomics-assisted breeding, efficient genotyping methods and genetic marker reference maps are needed. We present here the first consensus genetic map for intermediate wheatgrass (IWG), which confirms the species’ allohexaploid nature (2n = 6x = 42) and homology to Triticeae genomes. Genotyping-by-sequencing was used to identify markers that fit expected segregation ratios and construct genetic maps for 13 heterogeneous parents of seven full-sib families. These maps were then integrated using a linear programming method to produce a consensus map with 21 linkage groups containing 10,029 markers, 3601 of which were present in at least two populations. Each of the 21 linkage groups contained between 237 and 683 markers, cumulatively covering 5061 cM (2891 cM––Kosambi) with an average distance of 0.5 cM between each pair of markers. Through mapping the sequence tags to the diploid (2n = 2x = 14) barley reference genome, we observed high colinearity and synteny between these genomes, with three homoeologous IWG chromosomes corresponding to each of the seven barley chromosomes, and mapped translocations that are known in the Triticeae. The consensus map is a valuable tool for wheat breeders to map important disease-resistance genes within intermediate wheatgrass. These genomic tools can help lead to rapid improvement of IWG and development of high-yielding cultivars of this perennial grain that would facilitate the sustainable intensification of agricultural systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Armstead IP, Turner LB, Marshall AH, Humphreys MO, King IP, Thorogood D (2008) Identifying genetic components controlling fertility in the outcrossing grass species perennial ryegrass (Lolium perenne) by quantitative trait loci analysis and comparative genetics. New Phytol 178:559–571

    Article  CAS  PubMed  Google Scholar 

  • Baumann U, Juttner J, Bian X, Langridge P (2000) Self-incompatibility in the grasses. Ann Bot 85:203–209

    Article  CAS  Google Scholar 

  • Buetow KH (1991) Influence of aberrant observations on high-resolution linkage analysis outcomes. Am J Hum Genet 49:985–994

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cattani D (2014) Perennial grains around the world: II. ASA, CSSA, & SSA, Long Beach

    Google Scholar 

  • Chen Q, Conner RL, Laroche A, Thomas JB (1998) Genome analysis of Thinopyrum intermedium and Thinopyrum ponticum using genomic in situ hybridization. Genome 41:580–586

    Article  CAS  PubMed  Google Scholar 

  • Cornish MA, Hayward MD, Lawrence MJ (1980) Self-incompatibility in ryegrass. Heredity 44:333–340

    Article  Google Scholar 

  • DeHaan LR, Wang S, Larson SR, Cattani DJ, Zhang X, Kantarski TR (2014) Current efforts to develop perennial wheat and domesticate Thinopyrum intermedium as a perennial grain. In: Batello C, Wade L, Cox S, Pogna N, Bozzini A, Choptiany J (eds) Perennial crops for food security proceedings of the FAO expert workshop. FAO of the UN, Rome, pp 72–89

    Google Scholar 

  • Devos KM, Atkinson M, Chinoy C, Francis H, Harcourt R, Koebner R, Liu C, Masojć P, Xie D, Gale M (1993) Chromosomal rearrangements in the rye genome relative to that of wheat. Theor Appl Genet 85:673–680

    Article  CAS  PubMed  Google Scholar 

  • Devos KM, Dubcovsky J, Dvořák J, Chinoy CN, Gale MD (1995) Structural evolution of wheat chromosomes 4A, 5A, and 7B and its impact on recombination. Theor Appl Genet 91:282–288

    Article  CAS  PubMed  Google Scholar 

  • Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler ES, Mitchell SE (2011) A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS One 6:e19379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Endelman JB, Plomion C (2014) LPmerge: an R package for merging genetic maps by linear programming. Bioinformatics 30:1623–1624

    Article  CAS  PubMed  Google Scholar 

  • FAO (2014) Perennial crops for food security proceedings of the FAO expert workshop. FAO of the UN, Rome

    Google Scholar 

  • Fedak G, Han F (2005) Characterization of derivatives from wheat-Thinopyrum wide crosses. Cytogenet Genome Res 109:360–367

    Article  CAS  PubMed  Google Scholar 

  • Friebe B, Gill KS, Tuleen NA, Geill BS (1996) Transfer of wheat streak mosaic virus resistance from Agropyron intermedium into wheat. Crop Sci 36:857–861

    Article  Google Scholar 

  • Glover JD (2014) Perennial grains for food security in a changing world: gene to farm innovations. AAAS, Chicago

    Google Scholar 

  • Hackett CA, Broadfoot LB (2002) Effects of genotyping errors, missing values and segregation distortion in molecular marker data on the construction of linkage maps. Heredity 90:33–38

    Article  Google Scholar 

  • Hao M, Luo J, Zhang L, Yuan Z, Zheng Y, Zhang H, Liu D (2013) In situ hybridization analysis indicates that 4AL–5AL–7BS translocation preceded subspecies differentiation of Triticum turgidum. Genome 56:303–305

    Article  CAS  PubMed  Google Scholar 

  • Iehisa JCM, Ohno R, Kimura T, Enoki H, Nishimura S, Okamoto Y, Nasuda S, Takumi S (2014) A high-density genetic map with array-based markers facilitates structural and quantitative trait locus analyses of the common wheat genome. DNA Res 21:555–567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jensen KB, Dewey DR, Zhang YF (1990) Mode of pollination of perennial species of the Triticeae in relation to genomically defined genera. Can J Plant Sci 70:215–225

    Article  Google Scholar 

  • Kalinowski ST, Taper ML, Marshall TC (2007) Revising how the computer program cervus accommodates genotyping error increases success in paternity assignment. Mol Ecol 16:1099–1106

    Article  PubMed  Google Scholar 

  • King I, Purdie K, Liu C, Reader S, Pittaway T, Orford S, Miller T (1994) Detection of interchromosomal translocations within the Triticeae by RFLP analysis. Genome 37:882–887

    Article  CAS  PubMed  Google Scholar 

  • Klaas M, Yang B, Bosch M, Thorogood D, Manzanares C, Armstead IP, Franklin FCH, Barth S (2011) Progress towards elucidating the mechanisms of self-incompatibility in the grasses: further insights from studies in Lolium. Ann Bot 108:677–685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Larson SR, Kishii M, Tsujimoto H, Qi L, Chen P, Lazo GR, Jensen KB, Wang RRC (2012) Leymus EST linkage maps identify 4NsL–5NsL reciprocal translocation, wheat-Leymus chromosome introgressions, and functionally important gene loci. Theor Appl Genet 124:189–206

    Article  CAS  PubMed  Google Scholar 

  • Li HJ, Wang XM (2009) Thinopyrum ponticum and Th. intermedium: the promising source of resistance to fungal and viral diseases of wheat. J Genet Genom 36(9):557–565

    Article  CAS  Google Scholar 

  • Li H, Vikram P, Singh RP, Kilian A, Carling J, Song J, Burgueno-Ferreira JA, Bhavani S, Huerta-Espino J, Payne T, Sehgal D, Wenzl P, Singh S (2015) A high density GBS map of bread wheat and its application for dissecting complex disease resistance traits. BMC Genom 16:1–15

    Article  Google Scholar 

  • Liu X, Guo L, You J, Liu X, He Y, Yuan J, Liu G, Feng Z (2010) Progress of segregation distortion in genetic mapping of plants. Res J Agron 4:78–83

    Article  Google Scholar 

  • Liu W, Seifers DL, Qi LL, Friebe B, Gill BS (2011) A compensating wheat–Thinopyrum intermedium robertsonian translocation conferring resistance to wheat streak mosaic virus and Triticum mosaic virus. Crop Sci 51:2382–2390

    Article  CAS  Google Scholar 

  • Liu W, Danilova T, Rouse M, Bowden R, Friebe B, Gill B, Pumphrey M (2013) Development and characterization of a compensating wheat-Thinopyrum intermedium Robertsonian translocation with Sr44 resistance to stem rust (Ug99). Theor Appl Genet 126:1167–1177

    Article  CAS  PubMed  Google Scholar 

  • Lu H, Romero-Severson J, Bernardo R (2002) Chromosomal regions associated with segregation distortion in maize. Theor Appl Genet 105:622–628

    Article  CAS  PubMed  Google Scholar 

  • Lu F, Lipka AE, Glaubitz J, Elshire R, Cherney JH, Casler MD, Buckler ES, Costich DE (2013) Switchgrass genomic diversity, ploidy, and evolution: novel insights from a network-based SNP discovery protocol. PLoS Genet 9:e1003215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luo L, Xu S (2003) Mapping viability loci using molecular markers. Heredity 90:459–467

    Article  CAS  PubMed  Google Scholar 

  • Luo MC, Gu YQ, You FM, Deal KR, Ma Y, Hu Y, Huo N, Wang Y, Wang J, Chen S, Jorgensen CM, Zhang Y, McGuire PE, Pasternak S, Stein JC, Ware D, Kramer M, McCombie WR, Kianian SF, Martis MM, Mayer KFX, Sehgal SK, Li W, Gill BS, Bevan MW, Šimková H, Doležel J, Weining S, Lazo GR, Anderson OD, Dvorak J (2013) A 4-gigabase physical map unlocks the structure and evolution of the complex genome of Aegilops tauschii, the wheat D-genome progenitor. Proc Natl Acad Sci USA 110:7940–7945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mahelka V, Kopecky D, Pastova L (2011) On the genome constitution and evolution of intermediate wheatgrass (Thonopyrum intermedium: Poaceae, Triticeae). BMC Evol Biol 11:127. doi:10.1186/1471-2148-11-127

    Article  PubMed  PubMed Central  Google Scholar 

  • Morgan MT (2001) Consequences of life history for inbreeding depression and mating system evolution in plants. Proc R Soc Lond B Biol 268:1817–1824

    Article  CAS  Google Scholar 

  • Ohm H, Anderson J (2007) Utilization and performance in wheat of yellow dwarf virus resistance transferred from Thinopyrum intermedium. In: Buck HT, Nisi JE, Salomón N (eds) Wheat production in stressed environments. Springer, Netherlands, pp 149–152

    Chapter  Google Scholar 

  • Pew J, Muir PH, Wang J, Frasier TR (2015) Related: an R package for analysing pairwise relatedness from codominant molecular markers. Mol Ecol Resour 15:557–561

    Article  PubMed  Google Scholar 

  • Poland JA, Rife TW (2012) Genotyping-by-sequencing for plant breeding and genetics. Plant Genome 5:92–102

    Article  CAS  Google Scholar 

  • Poland JA, Brown PJ, Sorrells ME, Jannink JL (2012) Development of high-density genetic maps for barley and wheat using a novel two-enzyme genotyping-by-sequencing approach. PLoS One 7:e32253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • R_Core_Team (2016) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria

    Google Scholar 

  • Robins JG (2010) Cool-season grasses produce more total biomass across the growing season than do warm-season grasses when managed with an applied irrigation gradient. Biomass Bioenergy 34:500–505

    Article  Google Scholar 

  • Runck BC, Kantar MB, Jordan NR, Anderson JA, Wyse DL, Eckberg JO, Barnes RJ, Lehman CL, DeHaan LR, Stupar RM, Sheaffer CC, Porter PM (2014) The reflective plant breeding paradigm: a robust system of germplasm development to support strategic diversification of agroecosystems. Crop Sci 54:1939–1948

    Article  Google Scholar 

  • Sharma H, Ohm H, Goulart L, Lister R, Appels R, Behlhabib O (1995) Introgression and characterization of barley yellow dwarf virus resistance from Thinopyrum intermedium into wheat. Genome 38:406–413

    Article  CAS  PubMed  Google Scholar 

  • Tang S, Li Z, Jia X, Larkin PJ (2000) Genomic in situ hybridization (GISH) analyses of Thinopyrum intermedium, its partial amphiploid Zhong 5, and disease-resistant derivatives in wheat. Theor Appl Genet 100:344–352

    Article  CAS  Google Scholar 

  • Taylor DR, Ingvarsson PK (2003) Common features of segregation distortion in plants and animals. Genetica 117:27–35

    Article  CAS  PubMed  Google Scholar 

  • The_International_Barley_Genome_Sequencing_Consortium (2012) A physical, genetic and functional sequence assembly of the barley genome. Nature 491:711–716

    Google Scholar 

  • Thorogood D, Kaiser WJ, Jones JG, Armstead I (2002) Self-incompatibility in ryegrass 12. Genotyping and mapping the S and Z loci of Lolium perenne L. Heredity 88:385–390

    Article  CAS  PubMed  Google Scholar 

  • Tsvelev NN (1983) Grasses of the Soviet Union. Oxonian Press Pvt. Ltd., New Delhi, India, pp 196–298

    Google Scholar 

  • Van Ooijen J (2006) JoinMap 4, Software for the calculation of genetic linkage maps in experimental populations. Kyazma BV, Wageningen

    Google Scholar 

  • Vogel KP, Jensen KJ (2001) Adaptation of perennial Triticeae to the eastern central great plains. J Range Manag 54:674–679

    Article  Google Scholar 

  • Vogel KP, Arumuganathan K, Jensen KB (1999) Nuclear DNA content of perennial grasses of the Triticeae. Crop Sci 39:661–667

    Article  Google Scholar 

  • Wagoner P (1990) Perennial grain new use for intermediate wheatgrass. J Soil Water Conserv 45:81–82

    Google Scholar 

  • Wagoner PS, Jurgen R (1990) Perennial grain development: past efforts and potential for the future. CRC Crit Rev Plant Sci 9:381–408

    Article  Google Scholar 

  • Wang RRC, Larson SR, Jensen KB, Bushman BS, DeHaan LR, Wang S, Yan X (2015) Genome evolution of intermediate wheatgrass as revealed by EST-SSR markers developed from its three progenitor diploid species. Genome 58:63–70

    Article  CAS  PubMed  Google Scholar 

  • Yang J, Zhao X, Cheng K, Du H, Ouyang Y, Chen J, Qiu S, Huang J, Jiang Y, Jiang L, Ding J, Wang J, Xu C, Li X, Zhang Q (2012) A killer-protector system regulates both hybrid sterility and segregation distortion in rice. Science 337:1336–1340

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Sallam A, Gao L, Kantarski T, Poland J, DeHaan LR, Wyse DL, Anderson JA (2016) Establishment and optimization of genomic selection to accelerate the domestication and improvement of intermediate wheatgrass. Plant Genome 9. doi:10.3835/plantgenome2015.07.0059

  • Zhou G, Zhang Q, Zhang XQ, Tan C, Li C (2015) Construction of high-density genetic map in barley through restriction-site associated DNA sequencing. PLoS One 10:e0133161

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the Malone Family Land Preservation Foundation and The Land Institute through The Perennial Agriculture Project, The Initiative of Renewable Energy & The Environment, University of Minnesota, grant number RL_0015-12, and The Forever Green Initiative, University of Minnesota. The work at Kansas State University was done under the auspices of the Wheat Genetics Resource Center (WGRC) Industry/University Collaborative Research Center (I/UCRC) supported by NSF grant contract (IIP-1338897) and industry partners. Trevor Rife (Kansas State University) provided great assistance with combining the Ion and Illumina data and Jonathan Mitchell (University of Michigan/The Field Museum) provided assistance with early versions of the R scripts for custom genotype calling.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jesse Poland.

Ethics declarations

Ethical standard

The authors declare that the experiments comply with the current laws in the United States of America.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by P. Heslop-Harrison.

Traci Kantarski, Steve Larson and Xiaofei Zhang contributed equally to the findings.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kantarski, T., Larson, S., Zhang, X. et al. Development of the first consensus genetic map of intermediate wheatgrass (Thinopyrum intermedium) using genotyping-by-sequencing. Theor Appl Genet 130, 137–150 (2017). https://doi.org/10.1007/s00122-016-2799-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-016-2799-7

Keywords

Navigation