Skip to main content
Log in

Characterization of Lr75: a partial, broad-spectrum leaf rust resistance gene in wheat

  • Original Article
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

Here, we describe a strategy to improve broad-spectrum leaf rust resistance by marker-assisted combination of two partial resistance genes. One of them represents a novel partial adult plant resistance gene, named Lr75.

Abstract

Leaf rust caused by the fungal pathogen Puccinia triticina is a damaging disease of wheat (Triticum aestivum L.). The combination of several, additively-acting partial disease resistance genes has been proposed as a suitable strategy to breed wheat cultivars with high levels of durable field resistance. The Swiss winter wheat cultivar ‘Forno’ continues to show near-immunity to leaf rust since its release in the 1980s. This resistance is conferred by the presence of at least six quantitative trait loci (QTL), one of which is associated with the morphological trait leaf tip necrosis. Here, we used a marker-informed strategy to introgress two ‘Forno’ QTLs into the leaf rust-susceptible Swiss winter wheat cultivar ‘Arina’. The resulting backcross line ‘ArinaLrFor’ showed markedly increased leaf rust resistance in multiple locations over several years. One of the introgressed QTLs, QLr.sfr-1BS, is located on chromosome 1BS. We developed chromosome 1B-specific microsatellite markers by exploiting the Illumina survey sequences of wheat cv. ‘Chinese Spring’ and mapped QLr.sfr-1BS to a 4.3 cM interval flanked by the SSR markers gwm604 and swm271. QLr.sfr-1BS does not share a genetic location with any of the described leaf rust resistance genes present on chromosome 1B. Therefore, QLr.sfr-1BS is novel and was designated as Lr75. We conclude that marker-assisted combination of partial resistance genes is a feasible strategy to increase broad-spectrum leaf rust resistance. The identification of Lr75 adds a novel and highly useful gene to the small set of known partial, adult plant leaf rust resistance genes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Photographs were taken on field-infected plants in Switzerland in 2016

Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abràmoff MD, Magalhaes PJ, Ram SJ (2004) Image processing with imagej. Biophotonics Int 11:36–42

    Google Scholar 

  • Bariana H, Miah H, Brown G, Willey N, Lehmensiek A (2007) Molecular mapping of durable rust resistance in wheat and its implication in breeding. In: Wheat production in stressed environments: Proceedings of the 7th international wheat Conf, Mar del Plata, p 723–728

  • Bolton MD, Kolmer JA, Garvin DF (2008) Wheat leaf rust caused by Puccinia triticina. Mol Plant Pathol 9:563–575. doi:10.1111/j.1364-3703.2008.00487.x

    Article  PubMed  Google Scholar 

  • Breen J, Wicker T, Shatalina M et al (2013) A physical map of the short arm of wheat chromosome 1A. PLoS ONE. doi:10.1371/journal.pone.0080272

    Google Scholar 

  • Buerstmayr M, Matiasch L, Mascher F, Vida G, Ittu M, Robert O, Holdgate S, Flath K, Neumayer A, Buerstmayr H (2014) Mapping of quantitative adult plant field resistance to leaf rust and stripe rust in two European winter wheat populations reveals co-location of three QTL conferring resistance to both rust pathogens. Theor Appl Genet 127:2011–2028. doi:10.1007/s00122-014-2357-0

    Article  PubMed  PubMed Central  Google Scholar 

  • Caldwell R (1968) Breeding for general and/or specific plant disease resistance. In: Finley KW, Shepherd KW (ed) Proceeding International Wheat Genetic Symposium 3rd, Canberra, pp 263–272

  • Das M, Rajaram S, Kronstad W, Mundt C, Singh R (1993) Associations and genetics of three components of slow rusting in leaf rust of wheat. Euphytica 68:99–109

    Article  Google Scholar 

  • Dyck P, Samborski D (1979) Adult-plant leaf rust resistance in PI 250413, an introduction of common wheat. Can J Plant Sci 59:329–332

    Article  Google Scholar 

  • Endo TR, Gill BS (1996) The Deletion Stocks of Common Wheat. J Hered 87:295–307. doi:10.1093/oxfordjournals.jhered.a023003

    Article  CAS  Google Scholar 

  • Gale M, Atkinson M, Chinoy C, Harcourt R, Jia J, Li Q, Devos K (1995) Genetic maps of hexaploid wheat. In: Li ZS, Xin ZY (eds) Proceedings 8th International Wheat Genet Symp. China Agricultural Scientech Press, Beijing, pp 29–40

    Google Scholar 

  • Goyeau H, Ammar K, Berder J (2010) Virulence in Puccinia triticina for durum wheat cultivar Creso and other durum wheat cultivars carrying resistance gene Lr14a in France. Plant Dis 94:1068. doi:10.1094/PDIS-94-8-1068A

    Article  Google Scholar 

  • Herrera-Foessel SA, Singh RP, Huerta-Espino J, Crossa J, Djurle A, Yuen J (2008) Genetic analysis of slow rusting resistance to leaf rust in durum wheat. Crop Sci 48:2132–2140

    Article  Google Scholar 

  • Herrera-Foessel SA, Singh RP, Huerta-Espino J, Rosewarne GM, Periyannan SK, Viccars L, Calvo-Salazar V, Lan C, Lagudah ES (2012) Lr68: a new gene conferring slow rusting resistance to leaf rust in wheat. Theor Appl Genet 124:1475–1486. doi:10.1007/s00122-012-1802-1

    Article  CAS  PubMed  Google Scholar 

  • Hiebert CW, Thomas JB, Somers DJ, McCallum BD, Fox SL (2007) Microsatellite mapping of adult-plant leaf rust resistance gene Lr22a in wheat. Theor Appl Genet 115:877–884. doi:10.1007/s00122-007-0604-3

    Article  CAS  PubMed  Google Scholar 

  • Hiebert CW, Thomas JB, McCallum BD, Humphreys DG, DePauw RM, Hayden MJ, Mago R, Schnippenkoetter W, Spielmeyer W (2010) An introgression on wheat chromosome 4DL in RL6077 (Thatcher*6/PI 250413) confers adult plant resistance to stripe rust and leaf rust (Lr67). Theor Appl Genet 121:1083–1091. doi:10.1007/s00122-010-1373-y

    Article  PubMed  Google Scholar 

  • Huerta-Espino J, Singh RP, Germán S, McCallum BD, Park RF, Chen WQ, Bhardwaj SC, Goyeau H (2011) Global status of wheat leaf rust caused by Puccinia triticina. Euphytica 179:143–160. doi:10.1007/s10681-011-0361-x

    Article  Google Scholar 

  • Kolmer J (2013) Leaf rust of wheat: pathogen biology, variation and host resistance. Forests 4:70–84. doi:10.3390/f4010070

    Article  Google Scholar 

  • Kolmer JA, Singh RP, Garvin DF, Viccars L, William HM, Huerta-Espino J, Ogbonnaya FC, Raman H, Orford S, Bariana HS, Lagudah ES (2008) Analysis of the rust resistance region in wheat germplasm. Crop Sci 48:1841–1852. doi:10.2135/cropsci2007.08.0474

    Article  CAS  Google Scholar 

  • Krattinger SG, Lagudah ES, Spielmeyer W, Singh RP, Huerta-Espino J, McFadden H, Bossolini E, Selter LL, Keller B (2009) A putative ABC transporter confers durable resistance to multiple fungal pathogens in wheat. Science 323:1360–1363. doi:10.1126/science.1166453

    Article  CAS  PubMed  Google Scholar 

  • Lagudah ES, McFadden H, Singh RP, Huerta-Espino J, Bariana HS, Spielmeyer W (2006) Molecular genetic characterization of the Lr34/Yr18 slow rusting resistance gene region in wheat. Theor Appl Genet 114:21–30. doi:10.1007/s00122-006-0406-z

    Article  CAS  PubMed  Google Scholar 

  • Lagudah ES, Krattinger SG, Herrera-Foessel S, Singh RP, Huerta-Espino J, Spielmeyer W, Brown-Guedira G, Selter LL, Keller B (2009) Gene-specific markers for the wheat gene Lr34/Yr18/Pm38 which confers resistance to multiple fungal pathogens. Theor Appl Genet 119:889–898. doi:10.1007/s00122-009-1097-z

    Article  CAS  PubMed  Google Scholar 

  • Lillemo M, Singh R, William M, Herrera-Foessel S, Huerta- Espino J, German S, Campos P, Chaves M, Madriaga R, Xia X, Liang S, Liu D, Li Z, Lagudah E (2011) Multiple rust resistance and gene additivity in wheat: lessons from multi-location case studies in the cultivars Parula and Saar. Global Rust Initiative Meeting, St. Paul, pp 111–120

    Google Scholar 

  • Maccaferri M, Mantovani P, Tuberosa R, Deambrogio E, Giuliani S, Demontis A, Massi A, Sanguineti MC (2008) A major QTL for durable leaf rust resistance widely exploited in durum wheat breeding programs maps on the distal region of chromosome arm 7BL. Theor Appl Genet 117:1225–1240. doi:10.1007/s00122-008-0857-5

    Article  CAS  PubMed  Google Scholar 

  • Mago R, Tabe L, McIntosh RA, Pretorius Z, Kota R, Paux E, Wicker T, Breen J, Lagudah ES, Ellis JG, Spielmeyer W (2011) A multiple resistance locus on chromosome arm 3BS in wheat confers resistance to stem rust (Sr2), leaf rust (Lr27) and powdery mildew. Theor Appl Genet 123:615–623. doi:10.1007/s00122-011-1611-y

    Article  CAS  PubMed  Google Scholar 

  • Mcintosh RA, Wellings CR, Park RF (1995) Wheat rusts: an atlas of resistance genes. Csiro Publishing, Clayton

    Book  Google Scholar 

  • Mcintosh RA, Dubcovsky J, Rogers JM, Morris C, Appels R, Xia X (2013) Catalogue of gene symbols for wheat: 2013-2014. KOMUGI-Integrated Wheat Science Database. http://shigen.nig.ac.jp/wheat/komugi/genes/macgene/supplement2013.pdf

  • Messmer MM, Seyfarth R, Keller M, Schachermayr G, Winzeler M, Zanetti S, Feuillet C, Keller B (2000) Genetic analysis of durable leaf rust resistance in winter wheat. Theor Appl Genet 100:419–431

    Article  CAS  Google Scholar 

  • Moore JW, Herrera-Foessel S, Lan C, Schnippenkoetter W, Ayliffe M, Huerta-Espino J, Lillemo M, Viccars L, Milne R, Periyannan S, Kong X, Spielmeyer W, Talbot M, Bariana H, Patrick JW, Dodds P, Singh R, Lagudah E (2015) A recently evolved hexose transporter variant confers resistance to multiple pathogens in wheat. Nat Genet 47:1494–1498. doi:10.1038/ng.3439

    Article  CAS  PubMed  Google Scholar 

  • Park RF, Goyeau H, Felsenstein FG, Bartoš P, Zeller FJ (2001) Regional phenotypic diversity of Puccinia triticina and wheat host resistance in western Europe, 1995. Euphytica 122:113–127. doi:10.1023/A:1012603500686

    Article  CAS  Google Scholar 

  • Pathan AK, Park RF (2006) Evaluation of seedling and adult plant resistance to leaf rust in European wheat cultivars. Euphytica 149:327–342. doi:10.1007/s10681-005-9081-4

    Article  CAS  Google Scholar 

  • Raats D, Frenkel Z, Krugman T et al (2013) The physical map of wheat chromosome 1BS provides insights into its gene space organization and evolution. Genome Biol 14:R138. doi:10.1186/gb-2013-14-12-r138

    Article  PubMed  PubMed Central  Google Scholar 

  • Roelfs AP, Singh RP, Saari EE (1992) Rust diseases of wheat: concepts and methods of disease management. CIMMYT, Mexico

    Google Scholar 

  • Rosewarne GM, Singh RP, Huerta-Espino J, Herrera-Foessel SA, Forrest KL, Hayden MJ, Rebetzke GJ (2012) Analysis of leaf and stripe rust severities reveals pathotype changes and multiple minor QTLs associated with resistance in an Avocet × Pastor wheat population. Theor Appl Genet 124:1283–1294. doi:10.1007/s00122-012-1786-x

    Article  CAS  PubMed  Google Scholar 

  • Schnurbusch T, Paillard S, Schori A, Messmer M, Schachermayr G, Winzeler M, Keller B (2004) Dissection of quantitative and durable leaf rust resistance in Swiss winter wheat reveals a major resistance QTL in the Lr34 chromosomal region. Theor Appl Genet 108:477–484. doi:10.1007/s00122-003-1444-4

    Article  CAS  PubMed  Google Scholar 

  • Silva P, Calvo-Salazar V, Condón F, Quincke M, Pritsch C, Gutiérrez L, Castro A, Herrera-Foessel S, von Zitzewitz J, Germán S (2015) Effects and interactions of genes Lr34, Lr68 and Sr2 on wheat leaf rust adult plant resistance in Uruguay. Euphytica 204:599–608. doi:10.1007/s10681-014-1343-6

    Article  CAS  Google Scholar 

  • Singh RP, Rajaram S (1991) Resistance to Puccinia recondita f. sp. tritici in 50 Mexican bread wheat cultivars. Crop Sci 31:1472. doi:10.2135/cropsci1991.0011183X003100060016x

    Article  Google Scholar 

  • Singh RP, Rajaram S (1992) Genetics of adult-plant resistance of leaf rust in “Frontana” and three CIMMYT wheats. Genome 35:24–31

    Article  Google Scholar 

  • Singh RP, Mujeeb-Kazi A, Huerta-Espino J (1998) Lr46: a gene conferring slow-rusting resistance to leaf rust in wheat. Phytopathology 88:890–894. doi:10.1094/PHYTO.1998.88.9.890

    Article  CAS  PubMed  Google Scholar 

  • Singh RP, Huerta-Espino J, Rajaram S (2000) Achieving near-immunity to leaf and stripe rusts in wheat by combining slow rusting resistance genes. Acta Phytopathol Entomol Hungarica 35:133–139

    CAS  Google Scholar 

  • Singh RP, Huerta-Espino J, William HM (2005) Genetics and breeding for durable resistance to leaf and stripe rusts in wheat. Turkish J Agric For 29:121–127

    CAS  Google Scholar 

  • Singh D, Simmonds J, Park RF, Bariana HS, Snape JW (2009) Inheritance and QTL mapping of leaf rust resistance in the European winter wheat cultivar “Beaver”. Euphytica 169:253–261. doi:10.1007/s10681-009-9959-7

    Article  Google Scholar 

  • Singh A, Pandey MP, Singh AK, Knox RE, Ammar K, Clarke JM, Clarke FR, Singh RP, Pozniak CJ, DePauw RM, McCallum BD, Cuthbert RD, Randhawa HS, Fetch TG (2013a) Identification and mapping of leaf, stem and stripe rust resistance quantitative trait loci and their interactions in durum wheat. Mol Breed 31:405–418. doi:10.1007/s11032-012-9798-4

    Article  CAS  PubMed  Google Scholar 

  • Singh D, Mohler V, Park RF (2013b) Discovery, characterisation and mapping of wheat leaf rust resistance gene Lr71. Euphytica 190:131–136. doi:10.1007/s10681-012-0786-x

    Article  CAS  Google Scholar 

  • Stein N, Herren G, Keller B (2001) A new DNA extraction method for high-throughput marker analysis in a large-genome species such as Triticum aestivum. Plant Breed 356:354–356

    Article  Google Scholar 

  • R Core Team (2016) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. https://www.R-project.org/

  • Voorrips RE (2002) MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered 93:77–78. doi:10.1093/jhered/93.1.77

    Article  CAS  PubMed  Google Scholar 

  • William HM, Hoisington D, Singh RP, González-de-León D (1997) Detection of quantitative trait loci associated with leaf rust resistance in bread wheat. Genome 40:253–260

    Article  CAS  PubMed  Google Scholar 

  • Winzeler M, Mesterhazy A, Park RF et al (2000) Resistance of European winter wheat germplasm to leaf rust. Agronomie 20:783–792. doi:10.1051/agro:2000175

    Article  Google Scholar 

  • Zadoks J, Chang T, Konzak C (1974) A decimal code for the growth stages of cereals. Weed Res 14:415–421

    Article  Google Scholar 

Download references

Acknowledgments

We thank J. Raupp, Kansas State University, USA for kindly providing the seeds of the cytogenetic stocks of cv. ‘Chinese Spring’. We thank Bea Senger for her technical assistance with the field experiments as well as in the greenhouse. We also thank Gerhard Herren and Gabriele Buchmann for their technical assistance during the molecular genotyping. We are highly thankful to Dr. Anne Roulin, Department of Plant and Microbial Biology, University of Zurich for helping in statistical data analysis. The financial support for this work was provided by an Advanced Investigator Grant from the European Research Council (ERC-2009-AdG 249996, Durableresistance). SGK is supported by an Ambizione Grant of the Swiss National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beat Keller.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by T. Miedaner.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singla, J., Lüthi, L., Wicker, T. et al. Characterization of Lr75: a partial, broad-spectrum leaf rust resistance gene in wheat. Theor Appl Genet 130, 1–12 (2017). https://doi.org/10.1007/s00122-016-2784-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-016-2784-1

Keywords

Navigation