Skip to main content
Log in

Choice of models for QTL mapping with multiple families and design of the training set for prediction of Fusarium resistance traits in maize

  • Original Article
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

QTL analysis for Fusarium resistance traits with multiple connected families detected more QTL than single-family analysis. Prediction accuracy was tightly associated with the kinship of the validation and training set.

Abstract

QTL mapping has recently shifted from analysis of single families to multiple, connected families and several biometric models have been suggested. Using a high-density consensus map with 2472 marker loci, we performed QTL mapping with five connected bi-parental families with 639 doubled-haploid (DH) lines in maize for ear rot resistance and analyzed traits DON, Gibberella ear rot severity (GER), and days to silking (DS). Five biometric models differing in the assumption about the number and effects of alleles at QTL were compared. Model 2 to 5 performing joint analyses across all families and using linkage and/or linkage disequilibrium (LD) information identified all and even further QTL than Model 1 (single-family analyses) and generally explained a higher proportion p G of the genotypic variance for all three traits. QTL for DON and GER were mostly family specific, but several QTL for DS occurred in multiple families. Many QTL displayed large additive effects and most alleles increasing resistance originated from a resistant parent. Interactions between detected QTL and genetic background (family) occurred rarely and were comparatively small. Detailed analysis of three fully connected families yielded higher p G values for Model 3 or 4 than for Model 2 and 5, irrespective of the size N TS of the training set (TS). In conclusion, Model 3 and 4 can be recommended for QTL-based prediction with larger families. Including a sufficiently large number of full sibs in the TS helped to increase QTL-based prediction accuracy (r VS) for various scenarios differing in the composition of the TS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Bardol N, Ventelon M, Mangin B et al (2013) Combined linkage and linkage disequilibrium QTL mapping in multiple families of maize (Zea mays L.) line crosses highlights complementarities between models based on parental haplotype and single locus polymorphism. Theor Appl Genet 126:2717–2736. doi:10.1007/s00122-013-2167-9

    Article  PubMed  CAS  Google Scholar 

  • Bauer E, Falque M, Walter H et al (2013) Intraspecific variation of recombination rate in maize. Genome Biol 14:R103. doi:10.1186/gb-2013-14-9-r103

    Article  PubMed  PubMed Central  Google Scholar 

  • Beavis WD (1998) QTL analyses: power, precision, and accuracy. In: Paterson AH (ed) Molecular dissection of complex traits. CRC press, New York, pp 145–162

    Google Scholar 

  • Bink MCAM, Totir LR, ter Braak CJF et al (2012) QTL linkage analysis of connected populations using ancestral marker and pedigree information. Theor Appl Genet 124:1097–1113. doi:10.1007/s00122-011-1772-8

    Article  PubMed  PubMed Central  Google Scholar 

  • Blanc G, Charcosset A, Mangin B et al (2006) Connected populations for detecting quantitative trait loci and testing for epistasis: an application in maize. Theor Appl Genet 113:206–224. doi:10.1007/s00122-006-0287-1

    Article  PubMed  CAS  Google Scholar 

  • Bolduan C, Miedaner T, Schipprack W et al (2009) Genetic variation for resistance to ear rots and mycotoxins contamination in early European maize inbred lines. Crop Sci 49:2019–2028. doi:10.2135/cropsci2008.12.0701

    Article  Google Scholar 

  • Buckler ES, Holland JB, Bradbury PJ et al (2009) The genetic architecture of maize flowering time. Science 325:714–718. doi:10.1126/science.1174276

    Article  PubMed  CAS  Google Scholar 

  • Charcosset A, Mangin B, Moreau L, Combes L, Jourjon MF et al (2000) Heterosis in maize investigated using connected RIL populations. In: Quantitative genetics and breeding methods: the way ahead. INRA, Paris, pp 89–98

  • de Givry S, Bouchez M, Chabrier P et al (2005) CARTHA GENE: multipopulation integrated genetic and radiation hybrid mapping. Bioinformatics 21:1703–1704. doi:10.1093/bioinformatics/bti222

    Article  PubMed  Google Scholar 

  • Edwards MD, Stuber CW, Wendel JF (1987) Molecular-marker-facilitated investigations of quantitative trait loci in maize. I. Numbers, genomic distribution and types of gene action. Genetics 116:113–125

    PubMed  CAS  PubMed Central  Google Scholar 

  • Foiada F, Westermeier P, Kessel B et al (2015) Improving resistance to the European corn borer: a comprehensive study in elite maize using QTL mapping and genome-wide prediction. Theor Appl Genet 128:875–891. doi:10.1007/s00122-015-2477-1

    Article  PubMed  CAS  Google Scholar 

  • Ganal MW, Durstewitz G, Polley A et al (2011) A large maize (zea mays L.) SNP genotyping array: Development and germplasm genotyping, and genetic mapping to compare with the B73 reference genome. PLoS one. doi:10.1371/journal.pone.0028334

    PubMed  PubMed Central  Google Scholar 

  • Giraud H, Lehermeier C, Bauer E et al (2014) Linkage disequilibrium with linkage analysis of multiline crosses reveals different multiallelic QTL for hybrid performance in the flint and dent heterotic groups of maize. Genetics 198:1717–1734. doi:10.1534/genetics.114.169367

    Article  PubMed  PubMed Central  Google Scholar 

  • Haley CS, Knott SA (1992) A simple regression method for mapping quantitative trait loci in line crosses using flanking markers. Heredity 69:315–324

    Article  PubMed  CAS  Google Scholar 

  • Hill WC, Robertson A (1968) Linkage disequilibrium in finite populations. Theor Appl Genet 38:226–231

    Article  PubMed  CAS  Google Scholar 

  • Hill WG, Weir BS (1988) Variances and covariances of squared linkage disequilibria in finite populations. Theor Popul Biol 33:54–78. doi:10.1016/0040-5809(88)90004-4

    Article  PubMed  CAS  Google Scholar 

  • Holland JB (2007) Genetic architecture of complex traits in plants. Curr Opin Plant Biol 10:156–161. doi:10.1016/j.pbi.2007.01.003

    Article  PubMed  CAS  Google Scholar 

  • Huang X, Paulo MJ, Boer M, Effgen S, Keizer P, Koornneef M, van Eeuwijk FA (2011) Analysis of natural allelic variation in Arabidopsis using a multiparent recombinant inbred line population. Proc Natl Acad Sci 108:4488–4493

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Huang BE, Verbyla KL, Verbyla AP et al (2015) MAGIC populations in crops: current status and future prospects. Theor Appl Genet 128:999–1017

    Article  PubMed  Google Scholar 

  • Jannink JL, Jansen R (2001) Mapping epistatic quantitative trait loci with one-dimensional genome searches. Genetics 157:445–454

    PubMed  CAS  PubMed Central  Google Scholar 

  • Jannink JL, Lorenz AJ, Iwata H (2010) Genomic selection in plant breeding: from theory to practice. Brief Funct Genom 9:166–177. doi:10.1093/bfgp/elq001

    Article  CAS  Google Scholar 

  • Jansen RC, Jannink JL, Beavis WD (2003) Mapping quantitative trait loci in plant breeding populations. Crop Sci 43:829. doi:10.2135/cropsci2003.0829

    Article  CAS  Google Scholar 

  • Jourjon MF, Jasson S, Marcel J et al (2005) MCQTL: multi-allelic QTL mapping in multi-cross design. Bioinformatics 21:128–130. doi:10.1093/bioinformatics/bth481

    Article  PubMed  CAS  Google Scholar 

  • Lander ES, Botstein D (1989) Mapping mendelian factors underlying quantitative traits using RFLP linkage maps (published erratum appears in Genetics 1994 Feb; 136(2):705). Genetics 121:185–199

    PubMed  CAS  PubMed Central  Google Scholar 

  • Lehermeier C, Krämer N, Bauer E et al (2014) Usefulness of multi-parental populations of maize (Zea mays L.) for genome-based prediction. Genetics 198:3–16. doi:10.1534/genetics.114.161943

    Article  PubMed  PubMed Central  Google Scholar 

  • Leroux D, Rahmani A, Jasson S et al (2014) Clusthaplo: a plug-in for MCQTL to enhance QTL detection using ancestral alleles in multi-cross design. Theor Appl Genet 127:921–933. doi:10.1007/s00122-014-2267-1

    Article  PubMed  PubMed Central  Google Scholar 

  • Li H, Bradbury P, Ersoz E et al (2011) Joint QTL linkage mapping for multiple-cross mating design sharing one common parent. PLoS One. doi:10.1371/journal.pone.0017573

    Google Scholar 

  • Liu Y, Zeng ZB (2000) A general mixture model approach for mapping quantitative trait loci from diverse cross designs involving multiple inbred lines. Genet Res 75:345–355. doi:10.1017/S0016672300004493

    Article  PubMed  CAS  Google Scholar 

  • Lu Y, Xu J, Yuan Z et al (2012) Comparative LD mapping using single SNPs and haplotypes identifies QTL for plant height and biomass as secondary traits of drought tolerance in maize. Mol Breed 30:407–418. doi:10.1007/s11032-011-9631-5

    Article  CAS  Google Scholar 

  • Martin M, Miedaner T, Dhillon BS et al (2011) Colocalization of QTL for gibberella ear rot resistance and low mycotoxin contamination in early European maize. Crop Sci 51:1935–1945. doi:10.2135/cropsci2010.11.0664

    Article  Google Scholar 

  • Martin M, Miedaner T, Schwegler DD et al (2012) Comparative quantitative trait loci mapping for Gibberella ear rot resistance and reduced deoxynivalenol contamination across connected maize populations. Crop Sci 52:32–43. doi:10.2135/cropsci2011.04.0214

    Article  CAS  Google Scholar 

  • Melchinger AE, Utz HF, Schön CC (1998) Quantitative trait locus (QTL) mapping using different testers and independent population samples in maize reveals low power of QTL detection and large bias in estimates of QTL effects. Genetics 149:383–403. doi:10.1016/1369-5266(88)80015-3

    PubMed  CAS  PubMed Central  Google Scholar 

  • Meuwissen TH, Hayes BJ, Goddard ME (2001) Prediction of total genetic value using genome-wide dense marker maps. Genetics 157:1819–1829

    PubMed  CAS  PubMed Central  Google Scholar 

  • Miedaner T, Han S, Kessel B, et al (2015) Prediction of deoxynivalenol and zearalenone concentrations in Fusarium graminearum inoculated backcross populations of maize by symptom rating and near-infrared spectroscopy. Plant Breed 009:n/a–n/a. doi: 10.1111/pbr.12297

  • Mode CJ, Robinson HF (1959) Pleitropism and the genetic variance and covariance. Biometrics 15:518–537. doi:10.2307/2527650

    Article  Google Scholar 

  • Ogut F, Bian Y, Bradbury PJ, Holland JB (2015) Joint-multiple family linkage analysis predicts within-family variation better than single-family analysis of the maize nested association mapping population. Hered (Edinb) 114:552–563. doi:10.1038/hdy.2014.123

    Article  CAS  Google Scholar 

  • Peleman JD, Wye C, Zethof J, Sorensen AP, Verbakel H, van Oeveren J, Gerats T, van der Voort JR (2005) Quantitative trait locus (QTL) isogenic recombinant analysis: a method for high-resolution mapping of QTL within a single population. Genetics 171(3):1341–1352. doi:10.1534/genetics.105.045963

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Prigge V, Melchinger AE (2012) Production of haploids and doubled haploids in maize. Methods Mol Biol 877:161–172

    Article  PubMed  CAS  Google Scholar 

  • Rebai A, Goffinet B (1993) Power of tests for QTL detection using replicated progenies derived from a diallel cross. Theor Appl Genet 86:1014–1022. doi:10.1007/BF00211055

    Article  PubMed  CAS  Google Scholar 

  • Rebai A, Goffinet B (2000) More about quantitative trait locus mapping with diallel designs. Genet Res 75:243–247

    Article  PubMed  CAS  Google Scholar 

  • Reif JC, Melchinger AE, Frisch M (2005) Genetical and mathematical properties of similarity and dissimilarity coefficients applied in plant breeding and seed bank management. Crop Sci 45:1–7. doi:10.2135/cropsci2005.0001

    Article  Google Scholar 

  • Riedelsheimer C, Endelman JB, Stange M et al (2013) Genomic predictability of interconnected biparental maize populations. Genetics 194:493–503. doi:10.1534/genetics.113.150227

    Article  PubMed  PubMed Central  Google Scholar 

  • Rodgers-Melnick E, Bradbury PJ, Elshire RJ et al (2015) Recombination in diverse maize is stable, predictable, and associated with genetic load. Proc Natl Acad Sci 112:201413864. doi:10.1073/pnas.1413864112

    Article  Google Scholar 

  • Schnable PS, Ware D, Fulton RS et al (2009) The B73 maize genome: complexity, diversity, and dynamics. Science 326:1112–1115. doi:10.1126/science.1178534

    Article  PubMed  CAS  Google Scholar 

  • Schön CC, Lee M, Melchinger AE et al (1993) Mapping and characterization of quantitative trait loci affecting resistance against second-generation European corn borer in maize with the aid of RFLPs. Hered (Edinb) 70:648–659. doi:10.1038/hdy.1993.93

    Article  Google Scholar 

  • Schön CC, Utz HF, Groh S et al (2004) Quantitative trait locus mapping based on resampling in a vast maize testcross experiment and its relevance to quantitative genetics for complex traits. Genetics 167:485–498. doi:10.1534/genetics.167.1.485

    Article  PubMed  PubMed Central  Google Scholar 

  • Steinhoff J, Liu W, Maurer HP et al (2011) Multiple-line cross quantitative trait locus mapping in European elite maize. Crop Sci 51:2505. doi:10.2135/cropsci2011.03.0181

    Article  Google Scholar 

  • R Development Core Team (2008). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org

  • Utz HF (2005) PLABSTAT: a computer program for the statistical analysis of plant breeding experiments. University of Hohenheim, Germany

    Google Scholar 

  • Utz HF, Melchinger AE (1994) Comparison of different approaches to interval mapping of quantitative trait loci. In: Ooijen JW van, Jansen J (ed), Biometrics plant Breed Appl Mol markers Wageningen: the Netherlands, 6–8 July 1994. 1994, 195–204 ST

  • Utz HF, Melchinger AE, Schön CC (2000) Bias and sampling error of the estimated proportion of genotypic variance explained by quantitative trait loci determined from experimental data in maize using cross validation and validation with independent samples. Genetics 154:1839–1849

    PubMed  PubMed Central  Google Scholar 

  • Voorrips RE (2002) MapChart: software for the graphical presentation of linkage maps and QTLs. Heredity 93(1):77–78

    Article  CAS  Google Scholar 

  • Wu XL, Jannink JL (2004) Optimal sampling of a population to determine QTL location, variance, and allelic number. Theor Appl Genet 108:1434–1442. doi:10.1007/s00122-003-1569-5

    Article  PubMed  Google Scholar 

  • Wu Y, Bhat PR, Close TJ, Lonardi S (2008) Efficient and accurate construction of genetic linkage maps from the minimum spanning tree of a graph. PLoS Genet. doi:10.1371/journal.pgen.1000212

    Google Scholar 

  • Würschum T, Kraft T (2015) Evaluation of multi-locus models for genome-wide association studies: a case study in sugar beet. Heredity 114:281–290

    Article  PubMed  Google Scholar 

  • Würschum T, Liu W, Gowda M et al (2012) Comparison of biometrical models for joint linkage association mapping. Hered (Edinb) 108:332–340. doi:10.1038/hdy.2011.78

    Article  Google Scholar 

  • Xu S (1998) Mapping quantitative trait loci using multiple families of line crosses. Genetics 148:517–524

    PubMed  CAS  PubMed Central  Google Scholar 

  • Xu S (2003) Theoretical basis of the Beavis effect. Genetics 165:2259–2268

    PubMed  PubMed Central  Google Scholar 

  • Yu J, Holland JB, McMullen MD, Buckler ES (2008) Genetic design and statistical power of nested association mapping in maize. Genetics 178:539–551. doi:10.1534/genetics.107.074245

    Article  PubMed  PubMed Central  Google Scholar 

  • Zila CT, Samayoa LF, Santiago R et al (2013) A Genome-Wide association study reveals genes associated with Fusarium ear rot resistance in a maize core diversity panel. G3: Genes|Genomes|Genet. doi:10.1534/g3.113.007328

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This research was supported by Deutsche Forschungsgemeinschaft (DFG) grant no. ME 2260/6-1. The DH lines used in this study were produced by KWS SAAT SE (Einbeck, Germany). We are indebted to M. Martin and W. Schipprack and the staff of the Agricultural Research Station at Eckartsweier and Hohenheim for conducting the field trials for this study. We acknowledge the support of T. Wimmer in providing the software for cross-validation. We are grateful to S. Jasson and B. Mangin for generously providing technical assistance with software MCQTL_LD and D. Leroux with the “clusthaplo” R package; MCAM Bink and F. van Eeuwijk for giving constructive suggestions for our analyses; J. Li, L. Moreau and H. Giraud for answering questions about multiple regression analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Albrecht E. Melchinger.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standard

The experiments reported in this study comply with the current laws of Germany.

Additional information

Communicated by M. Frisch.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 129 kb)

Supplementary material 2 (PDF 1903 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, S., Utz, H.F., Liu, W. et al. Choice of models for QTL mapping with multiple families and design of the training set for prediction of Fusarium resistance traits in maize. Theor Appl Genet 129, 431–444 (2016). https://doi.org/10.1007/s00122-015-2637-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-015-2637-3

Keywords

Navigation