Skip to main content
Log in

Loci, genes, and mechanisms associated with tolerance to ferrous iron toxicity in rice (Oryza sativa L.)

  • Original Article
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

A genome-wide association study in rice yielded loci and candidate genes associated with tolerance to iron toxicity, and revealed biochemical mechanisms associated with tolerance in contrasting haplotypes.

Abstract

Iron toxicity is a major nutrient disorder affecting rice. Therefore, understanding the genetic and physiological mechanisms associated with iron toxicity tolerance is crucial in adaptive breeding and biofortification. We conducted a genome-wide association study (GWAS) by exposing a population of 329 accessions representing all subgroups of rice to ferrous iron stress (1000 ppm, 5 days). Expression patterns and sequence polymorphisms of candidate genes were investigated, and physiological hypotheses related to candidate loci were tested using a subset of contrasting haplotypes. Both iron including and excluding tolerant genotypes were observed, and shoot iron concentrations explained around 15.5 % of the variation in foliar symptom formation. GWAS for seven traits yielded 20 SNP markers exceeding a significance threshold of −log10 P > 4.0, which represented 18 distinct loci. One locus mapped for foliar symptom formation on chromosome 1 contained two putative glutathione-S-transferases, which were strongly expressed under iron stress and showed sequence polymorphisms in complete linkage disequilibrium with the most significant SNP. Contrasting haplotypes for this locus showed significant differences in dehydroascorbate reductase activity, which affected the plants’ redox status under iron stress. We conclude that maintaining foliar redox homeostasis under iron stress represented an important tolerance mechanism associated with a locus identified through GWAS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399

    Article  CAS  PubMed  Google Scholar 

  • Arosio P, Ingrassia R, Cavadini P (2009) Ferritins: a family of molecules for iron storage, antioxidation and more. Biochim Biophys Acta-Gen Subj 1790:589–599

    Article  CAS  Google Scholar 

  • Audebert A, Fofana M (2009) Rice yield gap due to iron toxicity in West Africa. J Agron Crop Sci 195:66–76

    Article  CAS  Google Scholar 

  • Barrett JC, Fry B, Maller J, Daly MJ (2005) Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 21:263–265

    Article  CAS  PubMed  Google Scholar 

  • Bashir K, Ishimaru Y, Nishizawa NK (2010) Iron uptake and loading into rice grains. Rice 3:122–130

    Article  Google Scholar 

  • Becana M, Moran JF, Iturbe-Ormaetxe I (1998) Iron-dependent oxygen free radical generation in plants subjected to environmental stress: toxicity and antioxidant protection. Plant Soil 201:137–147

    Article  CAS  Google Scholar 

  • Becker M, Asch F (2005) Iron toxicity in rice—conditions and management concepts. J Plant Nutr Soil Sc 168:558–573

    Article  CAS  Google Scholar 

  • Blokhina O, Virolainen E, Fagerstedt KV (2003) Antioxidants, oxidative damage and oxygen deprivation stress: a review. Ann Bot 91:179–194

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Ramdoss Y, Buckler ES (2007) TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics 23:2633–2635

    Article  CAS  PubMed  Google Scholar 

  • Bradford MM (1976) rapid and sensitive method for quantification of microgram quantities of protein utilizing principle of protein-dye binding. Analytical Biochem 72:248–254

    Article  CAS  Google Scholar 

  • Chen W, Gao Y, Xie W, Gong L, Lu K, Wang W, Li Y, Liu X, Zhang H, Dong H, Zhang W, Zhang L, Yu S, Wang G, Lian X, Luo J (2014) Genome-wide association analyses provide genetic and biochemical insights into natural variation in rice metabolism. Nature Genet 46:714–721

    Article  CAS  PubMed  Google Scholar 

  • Dobermann A, Fairhurst T (2000) Rice—nutrient disorders and nutrient management. Potash & Phosphate Institute (PPI), Potash and Phosphate Institute of Canada (PPIC) and International Rice Research Institute (IRRI)

  • Dufey I, Hakizimana P, Draye X, Lutts S, Bertin P (2009) QTL mapping for biomass and physiological parameters linked to resistance mechanisms to ferrous iron toxicity in rice. Euphytica 167:143–160

    Article  CAS  Google Scholar 

  • Dufey I, Hiel MP, Hakizimana P, Draye X, Lutts S, Kone B, Drame KN, Konate KA, Sie M, Bertin P (2012) Multienvironment quantitative trait loci mapping and consistency across environments of resistance mechanisms to ferrous iron toxicity in rice. Crop Sci 52:539–550

    Article  CAS  Google Scholar 

  • Dufey I, Mathieu A-S, Draye X, Lutts S, Bertin P (2015) Construction of an integrated map through comparative studies allows the identification of candidate regions for resistance to ferrous iron toxicity in rice. Euphytica 203:59–69

    Article  Google Scholar 

  • Edwards R, Dixon DP (2005) Plant glutathione transferases. In: Helmut S, Lester P (eds) Methods in Enzymology. Academic Press, pp 169–186

  • Engel K, Asch F, Becker M (2012) Classification of rice genotypes based on their mechanisms of adaptation to iron toxicity. J Plant Nutr Soil Sc 175:871–881

    Article  CAS  Google Scholar 

  • Finbow ME, Harrison MA (1997) The vacuolar H + -ATPase: a universal proton pump of eukaryotes. Biochem J 324:697–712

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Flint-Garcia SA, Thornsberry JM, Buckler ES (2003) Structure of linkage disequilibrium in plants. Annu Rev Plant Biol 54:357–374

    Article  CAS  PubMed  Google Scholar 

  • Frei M, Tanaka JP, Chen CP, Wissuwa M (2010) Mechanisms of ozone tolerance in rice: characterization of two QTLs affecting leaf bronzing by gene expression profiling and biochemical analyses. J Exp Bot 61:1405–1417

    Article  CAS  PubMed  Google Scholar 

  • Frei M, Wissuwa M, Pariasca-Tanaka J, Chen CP, Suedekum K-H, Kohno Y (2012) Leaf ascorbic acid level—is it really important for ozone tolerance in rice? Plant Physiol Biochem 59:63–70

    Article  CAS  PubMed  Google Scholar 

  • Gabriel SB, Schaffner SF, Nguyen H, Moore JM, Roy J, Blumenstiel B, Higgins J, DeFelice M, Lochner A, Faggart M, Liu-Cordero SN, Rotimi C, Adeyemo A, Cooper R, Ward R, Lander ES, Daly MJ, Altshuler D (2002) The structure of haplotype blocks in the human genome. Science 296:2225–2229

    Article  CAS  PubMed  Google Scholar 

  • Gillespie KM, Ainsworth EA (2007) Measurement of reduced, oxidized and total ascorbate content in plants. Nat Protoc 2:871–874

    Article  CAS  PubMed  Google Scholar 

  • Griffith OW (1980) Determination of glutathione and glutathione disulfide using glutathione reductase and 2-vinylpyrridine. Anal Biochem 106:207–212

    Article  CAS  PubMed  Google Scholar 

  • Guo YF, Li J, Bonham AJ, Wang YP, Deng HW (2009) Gains in power for exhaustive analyses of haplotypes using variable-sized sliding window strategy: a comparison of association-mapping strategies. Eur J Hum Genet 17:785–792

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Han B, Huang X (2013) Sequencing-based genome-wide association study in rice. Curr Opin Plant Biol 16:133–138

    Article  CAS  PubMed  Google Scholar 

  • Höller S, Hajirezaei MR, von Wiren N, Frei M (2014) Ascorbate metabolism in rice genotypes differing in zinc efficiency. Planta 239:367–379

    Article  PubMed  Google Scholar 

  • Hossain MA, Asada K (1984) Purification of dehydroascorbate reductase from spinach and its characterization as a thiol enzyme. Plant Cell Physiol 25:85–92

    CAS  Google Scholar 

  • Huang X, Han B (2014) Natural variations and genome-wide association studies in crop plants. Annu Rev Plant Biol 65:531–551

    Article  CAS  PubMed  Google Scholar 

  • Kawahara Y, de la Bastide M, Hamilton JP, Kanamori H, McCombie WR, Ouyang S, Schwartz DC, Tanaka T, Wu J, Zhou S, Childs KL, Davidson RM, Lin H, Quesada-Ocampo L, Vaillancourt B, Sakai H, Lee SS, Kim J, Numa H, Itoh T, Buell CR, Matsumoto T (2013) Improvement of the Oryza sativa Nipponbare reference genome using next generation sequence and optical map data. Rice 6:4

    Article  PubMed  Google Scholar 

  • Kumagai M, Kim J, Itoh R, Itoh T (2013) Tasuke: a web-based visualization program for large-scale resequencing data. Bioinformatics 29:1806–1808

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Laborde E (2010) Glutathione transferases as mediators of signaling pathways involved in cell proliferation and cell death. Cell Death Differ 17:1373–1380

    Article  CAS  PubMed  Google Scholar 

  • Lee J-Y (2009) Versatile casein kinase 1: multiple locations and functions. Plant Signal Behav 4:652–654

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Li H, Yang X, Luo A (2001) Ameniorating effect of potassium on iron toxicity in hybrid rice. J Plant Nutr 24:1849–1860

    Article  CAS  Google Scholar 

  • Liu W, Xu ZH, Luo D, Xue HW (2003) Roles of OsCKI1, a rice casein kinase I, in root development and plant hormone sensitivity. Plant J 36:189–202

    Article  CAS  PubMed  Google Scholar 

  • Marrs KA (1996) The functions and regulation of glutathione S-transferases in plants. Annu Rev Plant Phys 47:127–158

    Article  CAS  Google Scholar 

  • Moore KL, Chen Y, van de Meene AML, Hughes L, Liu W, Geraki T, Mosselmans F, McGrath SP, Grovenor C, Zhao F-J (2014) Combined NanoSIMS and synchrotron X-ray fluorescence reveal distinct cellular and subcellular distribution patterns of trace elements in rice tissues. New Phytol 201:104–115

    Article  CAS  PubMed  Google Scholar 

  • Noctor G, Foyer CH (1998) Ascorbate and glutathione: keeping active oxygen under control. Annu Rev Plant Phys 49:249–279

    Article  CAS  Google Scholar 

  • Quinet M, Vromman D, Clippe A, Bertin P, Lequeux H, Dufey I, Lutts S, Lefevre I (2012) Combined transcriptomic and physiological approaches reveal strong differences between short- and long-term response of rice (Oryza sativa) to iron toxicity. Plant Cell Environ 35:1837–1859

    Article  CAS  PubMed  Google Scholar 

  • Schroeder JI, Delhaize E, Frommer WB, Guerinot ML, Harrison MJ, Herrera-Estrella L, Horie T, Kochian LV, Munns R, Nishizawa NK, Tsay Y-F, Sanders D (2013) Using membrane transporters to improve crops for sustainable food production. Nature 497:60–66

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Smirnoff N, Conklin PL, Loewus FA (2001) Biosynthesis of ascorbic acid in plants: a renaissance. Annu Rev Plant Phys 52:437–467

    Article  CAS  Google Scholar 

  • Stein RJ, Ricachenevsky FK, Fett JP (2009) Differential regulation of the two rice ferritin genes (OsFER1 and OsFER2). Plant Sci 177:563–569

    Article  CAS  Google Scholar 

  • Storey JD, Tibshirani R (2003) Statistical significance for genome wide studies. Proc Natl Acad Sci USA 100:9440–9445

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ueda Y, Wu L, Frei M (2013) A critical comparison of two high-throughput ascorbate analyses methods for plant samples. Plant Physiol Biochem 70:418–423

    Article  CAS  PubMed  Google Scholar 

  • Ueda Y, Frimpong F, Qi Y, Matthus E, Wu L, Höller S, Kraska T, Frei M (2015) Genetic dissection of ozone tolerance in rice (Oryza sativa L.) by a genome-wide association study. J Exp Bot 66:293–306

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Verslues PE, Lasky JR, Juenger TE, Liu T-W, Kumar MN (2014) Genome-wide association mapping combined with reverse genetics identifies new effectors of low water potential-induced proline accumulation in Arabidopsis. Plant Physiol 164:144–159

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Vidal D, Alvarez-Florez F, Simon E (2010) Casein kinase activity in etiolated Cucumis sativus cotyledons. Plant Biol 12:134–144

    Article  CAS  PubMed  Google Scholar 

  • White PJ, Broadley MR (2009) Biofortification of crops with seven mineral elements often lacking in human diets—iron, zinc, copper, calcium, magnesium, selenium and iodine. New Phytol 182:49–84

    Article  CAS  PubMed  Google Scholar 

  • Wissuwa M, Kondo K, Fukuda T, Mori A, Rose MT, Pariasca-Tanaka J, Kretzschmar T, Haefele SM, Rose TJ (2015) Unmasking novel loci for internal phosphorus utilization efficiency in rice germplasm through genome-wide association analysis. PLOS One 10(4):e0124215. doi:10.1371/journal.pone.0124215

    Article  PubMed Central  PubMed  Google Scholar 

  • Wu L-B, Shhadi M, Gregorio G, Matthus E, Becker M, Frei M (2014) Genetic and physiological analysis of tolerance to acute iron toxicity in rice. Rice 7:8

    Article  PubMed Central  PubMed  Google Scholar 

  • Yoshida S, Forno DA, Cock JH, Gomez KA (1976) Laboratory manual for physiological studies of rice, 3rd edn. International Rice Research Institute, Manila

  • Zhao K, Tung C-W, Eizenga GC, Wright MH, Ali ML, Price AH, Norton GJ, Islam MR, Reynolds A, Mezey J, McClung AM, Bustamante CD, McCouch SR (2011) Genome-wide association mapping reveals a rich genetic architecture of complex traits in Oryza sativa. Nat Commun 2:467

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This study was financially supported by the fiat panis Foundation and Deutsche Forschungsgemeinschaft (DFG, Project ID FR2952-1/1). The authors also wish to thank IRRI for providing seeds and the members of the GRiSP Global Rice Phenotyping Network for sharing experiences in phenotyping and association mapping. We highly appreciate the contributions of many volunteers during the plant phenotyping.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Frei.

Additional information

Communicated by M. Wissuwa.

E. Matthus and L.B. Wu contributed equally to the work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PPTX 1156 kb)

Supplementary material 2 (XLSX 227 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matthus, E., Wu, LB., Ueda, Y. et al. Loci, genes, and mechanisms associated with tolerance to ferrous iron toxicity in rice (Oryza sativa L.). Theor Appl Genet 128, 2085–2098 (2015). https://doi.org/10.1007/s00122-015-2569-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-015-2569-y

Keywords

Navigation