Skip to main content
Log in

Improving resistance to the European corn borer: a comprehensive study in elite maize using QTL mapping and genome-wide prediction

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

The efficiency of marker-assisted selection for native resistance to European corn borer stalk damage can be increased when progressing from a QTL-based towards a genome-wide approach.

Abstract

Marker-assisted selection (MAS) has been shown to be effective in improving resistance to the European corn borer (ECB) in maize. In this study, we investigated the performance of whole-genome-based selection, relative to selection based on individual quantitative trait loci (QTL), for resistance to ECB stalk damage in European elite maize. Three connected biparental populations, comprising 590 doubled haploid (DH) lines, were genotyped with high-density single nucleotide polymorphism markers and phenotyped under artificial and natural infestation in 2011. A subset of 195 DH lines was evaluated in the following year as lines per se and as testcrosses. Resistance was evaluated based on stalk damage ratings, the number of feeding tunnels in the stalk and tunnel length. We performed individual- and joint-population QTL analyses and compared the cross-validated predictive abilities of the QTL models with genomic best linear unbiased prediction (GBLUP). For all traits, the GBLUP model consistently outperformed the QTL model despite the detection of QTL with sizeable effects. For stalk damage rating, GBLUP’s predictive ability exceeded at times 0.70. Model training based on DH line per se performance was efficient in predicting stalk breakage in testcrosses. We conclude that the efficiency of MAS for ECB stalk damage resistance can be increased considerably when progressing from a QTL-based towards a genome-wide approach. With the availability of native ECB resistance in elite European maize germplasm, our results open up avenues for the implementation of an integrated genome-based selection approach for the simultaneous improvement of yield, maturity and ECB resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Anderson JA, Chao S, Liu S (2008) Molecular breeding using a major QTL for Fusarium head blight resistance in wheat. Crop Sci 47:112–119

    Google Scholar 

  • Bernardo R (2008) Molecular markers and selection for complex traits in plants: learning from the last 20 years. Crop Sci 48:1649–1664

    Article  Google Scholar 

  • Bohn M, Schulz B, Kreps R, Klein D, Melchinger AE (2000) QTL mapping for resistance against the European corn borer (Ostrinia nubilalis H.) in early maturing European dent germplasm. Theor Appl Genet 101:907–917

    Article  CAS  Google Scholar 

  • Browning BL, Browning SR (2009) A unified approach to genotype imputation and haplotype-phase inference for large data sets of trios and unrelated individuals. Am J Hum Genet 84:210–223

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Butler DG, Cullis BR, Gilmour AR, Gogel BJ (2009) ASReml-R reference manual. Queensland Department of Primary Industries and Fisheries, Toowoomba

    Google Scholar 

  • Cahill DJ, Schmidt DH (2004) Use of marker assisted selection in a product development breeding program. In: Proceedings of 4th International Crop Science Congress, 26 Sep–1 Oct 2004, Brisbane, Australia

  • Cardinal AJ, Lee M, Sharopova N, Woodman-Clikeman WL, Long MJ (2001) Genetic mapping and analysis of quantitative trait loci for resistance to stalk tunneling by the European corn borer in maize. Crop Sci 41:835–845

    Article  CAS  Google Scholar 

  • Charcosset A, Mangin B, Moreau L, Combes L, Jourjon M-F, Gallais A (2001) Heterosis in maize investigated using connected RIL populations. Quantitative genetics and breeding methods: the way ahead. Les colloques 96, INRA Editions, Paris, France

  • Churchill GA, Doerge RW (1994) Empirical threshold values for quantitative trait mapping. Genetics 138:963–971

    PubMed Central  CAS  PubMed  Google Scholar 

  • de los Campos G, Hickey JM, Pong-Wong R, Daetwyler HD, Calus MPL (2013) Whole-genome regression and prediction methods applied to plant and animal breeding. Genetics 193:327–345

    Article  PubMed  Google Scholar 

  • Ducrocq S, Madur D, Veyrieras J-B, Camus-Kulandaivelu L, Kloiber-Maitz M, Presterl T, Ouzunova M, Manicacci D, Charcosset A (2008) Key impact of Vgt1 on flowering time adaptation in maize: evidence from association mapping and ecogeographical information. Genetics 178:2433–2437

    Article  PubMed Central  PubMed  Google Scholar 

  • Flint-Garcia SA, Darrah LL, McMullen MD, Hibbard BE (2003) Phenotypic versus marker-assisted selection for stalk strength and second-generation European corn borer resistance in maize. Theor Appl Genet 107:1331–1336

    Article  CAS  PubMed  Google Scholar 

  • Ganal MW, Durstewitz G, Polley A, Bérard A, Buckler ES, Charcosset A, Clarke JD, Graner E-M, Hansen M, Joets J, Le Paslier M-C, McMullen MD, Montalent P, Rose M, Schön C-C et al (2011) A large maize (Zea mays L.) SNP genotyping array: development and germplasm genotyping, and genetic mapping to compare with the B73 reference genome. PLoS One 6:e28334

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Habier D, Fernando RL, Dekkers JCM (2007) The impact of genetic relationship information on genome-assisted breeding values. Genetics 177:2389–2397

    PubMed Central  CAS  PubMed  Google Scholar 

  • Haldane JBS (1919) The combination of linkage values, and the calculation of distance between the loci of linked factors. J Genet 8:299–309

    Article  Google Scholar 

  • Hallauer AR, Miranda JB (1981) Quantitative genetics in maize breeding. Iowa State University Press, Ames

    Google Scholar 

  • Holland JB, Nyquist WE, Cervantes-Martínez CT (2003) Estimating and interpreting heritability for plant breeding: an update. In: Janick J (ed) Plant Breeding Reviews, vol 22. Wiley, Oxford, pp 9–112

    Google Scholar 

  • Holm S (1979) A simple sequentially rejective multiple test procedure. Scand J Stat 6:65–70

    Google Scholar 

  • Hudon M, Chiang MS (1991) Evaluation of resistance of maize germplasm to the univoltine European corn borer Ostrinia naubilalis (Hübner) and relationship with maize maturity in Quebec. Maydica 36:69–74

    Google Scholar 

  • Jampatong C, McMullen MD, Barry BD, Darrah LL, Byrne PF, Kross H (2002) Quantitative trait loci for first- and second-generation European corn borer resistance derived from the maize inbred Mo47. Crop Sci 42:584–593

    Article  CAS  Google Scholar 

  • Jarvis JL, Guthrie WD (1980) Resistance of maize plant introductions to sheath-collar feeding by 2nd-generation European corn borers. Maydica 25:25–32

    Google Scholar 

  • Jourjon M-F, Jasson S, Marcel J, Ngom B, Mangin B (2005) MCQTL: multi-allelic QTL mapping in multi-cross design. Bioinformatics 21:128–130

    Article  CAS  PubMed  Google Scholar 

  • Krakowsky MD, Brinkman MJ, Woodman-Clikeman WL, Lee M (2002) Genetic components of resistance to stalk tunneling by the European corn borer in maize. Crop Sci 42:1309–1315

    Article  Google Scholar 

  • Krakowsky MD, Lee M, Woodman-Clikeman WL, Long MJ, Sharopova N (2004) QTL mapping of resistance to stalk tunneling by the European corn borer in RILs of maize population B73 × De811. Crop Sci 44:274–282

    Article  CAS  Google Scholar 

  • Krakowsky MD, Lee M, Holland JB (2007) Genotypic correlation and multivariate QTL analyses for cell wall components and resistance to stalk tunneling by the European corn borer in maize. Crop Sci 47:485–488

    Article  Google Scholar 

  • Kreps RC, Gumber RK, Schulz B, Klein D, Melchinger AE (1998) Genetic variation in testcrosses of European maize inbreds for resistance to the European corn borer and relations to line per se performance. Plant Breed 117:319–327

    Article  Google Scholar 

  • Luan T, Woolliams JA, Lien S, Kent M, Svendsen M, Meuwissen THE (2009) The accuracy of genomic selection in Norwegian red cattle assessed by cross-validation. Genetics 183:1119–1126

    Article  PubMed Central  PubMed  Google Scholar 

  • Mangin B, Cathelin R, Delannoy D, Escalière B, Lambert S, Marcel J, Ngom B, Jourjon M-F, Rahmani A, Jasson S (2010) MCQTL: a reference manual. Rapport Ubia Toulouse N° 2010/1–February 2010. Département de Mathématiques et Informatique Appliquées. Institut National de la Recherche Agronomique (INRA), France

  • Meissle M, Mouron P, Musa T, Bigler F, Pons X, Vasileiadis VP, Otto S, Antichi D, Kiss J, Pálinkás Z, Dorner Z, Van Der Weide R, Groten J, Czembor E, Adamczyk J et al (2010) Pests, pesticide use and alternative options in European maize production: current status and future prospects. J Appl Entomol 134:357–375

    Article  Google Scholar 

  • Melchinger AE, Kreps R, Späth R, Klein D, Schulz B (1998) Evaluation of early-maturing European maize inbreds for resistance to the European corn borer. Euphytica 99:115–125

    Article  Google Scholar 

  • Meuwissen THE, Hayes BJ, Goddard ME (2001) Prediction of total genetic value using genome-wide dense marker maps. Genetics 157:1819–1829

    PubMed Central  CAS  PubMed  Google Scholar 

  • Miedaner T, Korzun V (2012) Marker-assisted selection for disease resistance in wheat and barley breeding. Phytopathology 102:560–566

    Article  PubMed  Google Scholar 

  • Miedaner T, Schwegler DD, Wilde P, Reif JC (2014) Association between line per se and testcross performance for eight agronomic and quality traits in winter rye. Theor Appl Genet 127:33–41

    Article  PubMed  Google Scholar 

  • Mihaljevic R, Schön CC, Utz HF, Melchinger AE (2005) Correlations and QTL correspondence between line per se and testcross performance for agronomic traits in four populations of european maize. Crop Sci 45:114–122

    Article  Google Scholar 

  • Mihm JA (1983) Efficient mass rearing and infestation techniques to screen for host plant resistance to maize stem borers, Diatratea spp. CIMMYT, Mexico

    Google Scholar 

  • Mode CJ, Robinson HF (1959) Pleiotropism and the genetic variance and covariance. Biometrics 15:518–537

    Article  Google Scholar 

  • Ordas B, Malvar R, Santiago R, Butron A (2010) QTL mapping for Mediterranean corn borer resistance in European flint germplasm using recombinant inbred lines. BMC Genom 11:174

    Article  Google Scholar 

  • Orsini E, Krchov LM, Uphaus J, Melchinger AE (2012) Mapping of QTL for resistance to first and second generation of European corn borer using an integrated SNP and SSR linkage map. Euphytica 183:197–206

    Article  CAS  Google Scholar 

  • Papst C, Melchinger AE, Eder J, Schulz B, Klein D, Bohn M (2001) QTL mapping for resistance to European corn borer (Ostrinia nubilalis Hb.) in early maturing European dent maize (Zea mays L.) germplasm and comparison of genomic regions for resistance across two populations of F3 families. Maydica 46:195–205

    Google Scholar 

  • Papst C, Bohn M, Utz HF, Melchinger AE, Klein D, Eder J (2004) QTL mapping for European corn borer resistance (Ostrinia nubilalis Hb.), agronomic and forage quality traits of testcross progenies in early-maturing European maize (Zea mays L.) germplasm. Theor Appl Genet 108:1545–1554

    Article  CAS  PubMed  Google Scholar 

  • Peiffer JA, Flint-Garcia SA, De Leon N, McMullen MD, Kaeppler SM, Buckler ES (2013) The genetic architecture of maize stalk strength. PLoS One 8:e67066

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • R Development Core Team (2013) R: A Language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Röber FK, Gordillo GA, Geiger HH (2005) In vivo haploid induction in maize—performance of new inducers and significance of doubled haploid lines in hybrid breeding. Maydica 50:275–283

    Google Scholar 

  • Rogers JS (1972) Measures of genetic similarity and genetic distances. Stud Genet 7213:145–153 Univ Texas Publ

    Google Scholar 

  • Russell WA, Guthrie WD, Grindeland RL (1974) Breeding for resistance in maize to first and second broods of the European corn borer. Crop Sci 14:725–727

    Article  Google Scholar 

  • Rutkoski J, Benson J, Jia Y, Brown-Guedira G, Jannink J-L, Sorrells M (2012) Evaluation of genomic prediction methods for Fusarium head blight resistance in wheat. Plant Gen 5:51–61

    Article  CAS  Google Scholar 

  • Salvi S, Sponza G, Morgante M, Tomes D, Niu X, Fengler KA, Meeley R, Ananiev EV, Svitashev S, Bruggemann E, Li B, Hainey CF, Radovic S, Zaina G, Rafalski J-A et al (2007) Conserved noncoding genomic sequences associated with a flowering-time quantitative trait locus in maize. PNAS 104:11376–11381

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Schnable PS, Ware D, Fulton RS, Stein JC, Wei F, Pasternak S, Liang C, Zhang J, Fulton L, Graves TA, Minx P, Reily AD, Courtney L, Kruchowski SS, Tomlinson C et al (2009) The B73 maize genome: complexity, diversity, and dynamics. Science 326:1112–1115

    Article  CAS  PubMed  Google Scholar 

  • Schön CC, Lee M, Melchinger AE, Guthrie WD, Woodman WL (1993) Mapping and characterization of quantitative trait loci affecting resistance against second-generation European corn borer in maize with the aid of RFLPs. Heredity 70:648–659

    Article  Google Scholar 

  • Schön CC, Utz HF, Groh S, Truberg B, Openshaw S, Melchinger AE (2004) Quantitative trait locus mapping based on resampling in a vast maize testcross experiment and its relevance to quantitative genetics for complex traits. Genetics 167:485–498

    Article  PubMed Central  PubMed  Google Scholar 

  • St.Clair DA (2010) Quantitative disease resistance and quantitative resistance loci in breeding. Annu Rev Phytopathol 48:247–268

    Article  CAS  PubMed  Google Scholar 

  • Technow F, Bürger A, Melchinger AE (2013) Genomic prediction of northern corn leaf blight resistance in maize with combined or separated training sets for heterotic groups. G3(3):197–203

    Google Scholar 

  • Tefera T, Mugo S, Tende R, Likhayo P (2011) Methods of screening maize for resistance to stem borers and post-harvest insect pests. CIMMYT, Nairobi

    Google Scholar 

  • Trnka M, Muška F, Semerádová D, Dubrovský M, Kocmánková E, Žalud Z (2007) European corn borer life stage model: regional estimates of pest development and spatial distribution under present and future climate. Ecol Model 207:61–84

    Article  Google Scholar 

  • Utz HF (2011) PLABSTAT v3A. A computer program for statistical analysis of plant breeding experiments. Institute of Plant Breeding, Seed Science and Population Genetics, University of Hohenheim, Stuttgart, Germany

  • Van Ooijen JW (2006) JoinMap® 4, Software for the calculation of genetic linkage maps in experimental populations. Kyazma BV, Wageningen, Netherlands

  • Wimmer V, Albrecht T, Auinger H-J, Schön C-C (2012) synbreed: a framework for the analysis of genomic prediction data using R. Bioinformatics 28:2086–2087

    Article  CAS  PubMed  Google Scholar 

  • Wimmer V, Lehermeier C, Albrecht T, Auinger H-J, Wang Y, Schön C-C (2013) Genome-wide prediction of traits with different genetic architecture through efficient variable selection. Genetics 195:573–587

    Article  PubMed Central  PubMed  Google Scholar 

  • Zhang Z, Ober U, Erbe M, Zhang H, Gao N, He J, Li J, Simianer H (2014) Improving the accuracy of whole genome prediction for complex traits using the results of genome wide association studies. PLoS One 9:e93017

    Article  PubMed Central  PubMed  Google Scholar 

  • Zhao Y, Mette MF, Gowda M, Longin CFH, Reif JC (2014) Bridging the gap between marker-assisted and genomic selection of heading time and plant height in hybrid wheat. Heredity 112:638–645

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank the MCQTL development team, in particular Brigitte Mangin and Sylvain Jasson, who provided technical advice on how to implement parts of our cross-validation procedure for the MCQTL software. We also thank Sylwia Schepella, Stefan Schwertfirm, Felicitas Dittrich, Iris Leineweber, Georg Maier and Kurt Walter for their technical assistance and Florian Steinbacher from the Gewächshauslaborzentrum Dürnast for providing access to the climate chambers for cultivating the corn borer larvae. The authors are also grateful to the field team of the LfL maize breeding group for their excellent technical assistance at the Freising field location and to the field team from the KWS breeding station in Gondelsheim for their help with artificial infestation and stalk dissection at the Münzesheim field location. This research was funded by the German Federal Ministry of Food and Agriculture (BMEL) under the “Innovationsförderung” programme (FKZ: 2814504610).

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standards

The experiments reported in this study comply with the current laws of Germany.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chris-Carolin Schön.

Additional information

Communicated by M. Bink.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Foiada, F., Westermeier, P., Kessel, B. et al. Improving resistance to the European corn borer: a comprehensive study in elite maize using QTL mapping and genome-wide prediction. Theor Appl Genet 128, 875–891 (2015). https://doi.org/10.1007/s00122-015-2477-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-015-2477-1

Keywords

Navigation