Skip to main content
Log in

Identification and genetic mapping of the putative Thinopyrum intermedium-derived dominant powdery mildew resistance gene PmL962 on wheat chromosome arm 2BS

Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

Powdery resistance putatively derived from Thinopyrum intermedium in the wheat line L962 is controlled by a single dominant gene designated PmL962 and mapped to chromosome arm 2BS.

Abstract

Powdery mildew, caused by Blumeria graminis f. sp. tritici (Bgt), is a destructive disease affecting the production of wheat (Triticum aestivum). Powdery mildew resistance was putatively transferred from Thinopyrum intermedium to the common wheat line L962, which conferred resistance to multiple Chinese Bgt isolates. Genetic analysis of the powdery mildew response was conducted by crossing the resistant line L962 with the susceptible line L983. Disease assessments of the F1, F2, and F2:3 populations from the cross L983/L962 indicated that resistance was controlled by a single dominant gene. A total of 373 F2:3 lines and 781 pairs of genomic simple sequence repeat (SSR) primers were employed to determine the chromosomal location of the resistance gene. The gene was linked to four publicly available and recently developed wheat genomic SSR markers and seven EST-STS markers. The resistance gene was mapped to chromosome arm 2BS based on the locations of the linked markers. Pedigree, molecular marker and resistance response data indicated that the powdery mildew resistance gene in L962 is novel. It was temporarily designated PmL962. It is flanked by Xwmc314 and BE443737at genetic distances of 2.09 and 3.74 cM, respectively, and located in a 20.77 cM interval that is co-linear with a 269.4 kb genomic region on chromosome 5 in Brachypodium distachyon and a 223.5 kb genomic region on rice (Oryza sativa) chromosome 4. The markers that are closely linked to this gene have potential applications in marker-assisted breeding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

References

  • Autrique E, Singh R, Tanksley S, Sorrells M (1995) Molecular markers for four leaf rust resistance genes introgressed into wheat from wild relatives. Genome 38:75–83

    Article  CAS  PubMed  Google Scholar 

  • Bassam BJ, Caetano-Anolles G, Gresshoff PM (1991) Fast and sensitive silver staining of DNA in polyacrylamide gels. Anal Biochem 196:80–83

    Article  CAS  PubMed  Google Scholar 

  • Brenchley R, Spannagel M, Pfeifer M et al (2012) Analysis of the bread wheat genome using whole-genome shotgun sequencing. Nature 491:705–710

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cao A, Xing L, Wang X, Yang X, Wang W, Sun Y, Qian C, Ni J, Chen Y, Liu D, Wang X, Chen P (2011) Serine/threonine kinase gene Stpk-V, a key member of powdery mildew resistance gene Pm21, confers powdery mildew resistance in wheat. Proc Natl Acad Sci USA 108:7727–7732

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Danilova T, Friebe B, Gill BS (2014) Development of a wheat single gene FISH map for analyzing homoeologous relationship and chromosomal rearrangements within the Triticeae. Theor Appl Genet 127:715–730

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fedak G (1999) Molecular aids for integration of alien chromatin through wide crosses. Genome 42:584–591

    Article  CAS  Google Scholar 

  • Fedak G, Han F (2005) Characterization of derivatives from wheat–Thinopyrum wide crosses. Cytogenet Genome Res 109:350–359

    Article  Google Scholar 

  • Friebe B, Jiang J, Raupp WJ, McIntosh RA, Gill BS (1996) Characterization of wheat-alien translocations conferring resistance to diseases and pests: current status. Euphytica 91:59–87

    Article  Google Scholar 

  • Fu D, Uauy C, Distelfeld A, Blechl A, Epstein L, Chen X, Sela H, Fahima T, Dubcovsky J (2009) A kinase-START gene confers temperature-dependent resistance to wheat stripe rust. Science 323:1357–1360

    Article  CAS  PubMed  Google Scholar 

  • Gupta PK, Varshney RK, Sharma PC, Ramesh B (1999) Molecular maker and their applications in wheat breeding. Plant Breed 118:369–390

    Article  CAS  Google Scholar 

  • Gupta PK, Balyan HS, Edwards KJ et al (2002) Genetic mapping of 66 new microsatellite (SSR) in bread wheat. Theor Appl Genet 105:413–422

    Article  CAS  PubMed  Google Scholar 

  • He R, Chang Z, Yang Z, Yuan Z, Zhan H, Zhang X, Liu J (2009) Inheritance and mapping of powdery mildew resistance gene Pm43 introgressed from Thinopyrum intermedium into wheat. Theor Appl Genet 118:1173–1180

    Article  CAS  PubMed  Google Scholar 

  • Hua W, Liu ZJ, Zhu J, Xie CJ, Yang TM, Zhou YL, Duan XY, Sun QX, Liu ZY (2009) Identification and genetic mapping of pm42, a new recessive wheat powdery mildew resistance gene derived from wild emmer (Triticum turgidum var. dicoccoides). Theor Appl Genet 119:223–230

    Article  CAS  PubMed  Google Scholar 

  • Huang Q, Li X, Chen WQ, Xiang ZP, Zhong SF, Chang ZJ, Zhang M, Zhang HY, Tan FQ, Ren ZL, Luo PG (2014) Genetic mapping of a putative Thinopyrum intermedium-derived stripe rust resistance gene on wheat chromosome 1B. Theor Appl Genet 127:843–853

    Article  CAS  PubMed  Google Scholar 

  • Ji H, Meng Q, Wang Q, Zhang Y, Shi F (2007) Study on the virulent genes and frequency of Blumeria graminis DC. Speer in Heilongjiang province. Heilongjiang Agric Sci 3:49–51

    Google Scholar 

  • Jia JZ, Zhang SC, Kong XY et al (2013) Aegilopstauschii draft genome sequence reveals a gene repertoire of wheat adaptation. Nature 496:91–95

    Article  CAS  PubMed  Google Scholar 

  • Kosambi DD (1944) The estimation of map distances from recombination values. Ann Eugen 12:172–175

    Article  Google Scholar 

  • Krattinger SG, Lagudah ES, Spielmeyer W, Singh RP, Huerta-Espino J, McFadden H, Bossolini E, Selter LL, Keller B (2009) A putative ABC transporter confers durable resistance to multiple fungal pathogens in wheat. Science 323:1360–1363

    Article  CAS  PubMed  Google Scholar 

  • Kuraparthy V, Sood S, Chhuneja P, Dhaliwal HS, Kaur S, Bowder RL, Gill BS (2007) A cryptic wheat-Aegilops triuncialis translocation with leaf rust resistance gene Lr58. Crop Sci 47:1995–2003

    Article  CAS  Google Scholar 

  • Li HJ, Wang XM (2009) Thinopyrum ponticum and Th. intermedium: the promising source of resistance to fungal and viral diseases of wheat. J Genet Genomics 36:557–565

    Article  CAS  PubMed  Google Scholar 

  • Ling HQ, Zhao SC, Liu DC et al (2013) Draft genome of the wheat A-genome progenitor Triticum urartu. Nature 496:87–90

    Article  CAS  PubMed  Google Scholar 

  • Liu SB, Wang HG (2005) Characterization of wheat-Thinopyron intermedium substitution line with resistance to powdery mildew. Euphytica 143:229–233

    Article  Google Scholar 

  • Liu Z, Zhu J, Cui Y, Liang Y, Wu H, Song W, Liu Q, Yang T, Sun Q, Liu Z (2012) Identification and comparative mapping of a powdery mildew resistance gene derived from wild emmer (Triticum turgidum var. dicoccoides) on chromosome 2BS. Theor Appl Genet 124:1041–1049

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Chang ZJ, Zhang XJ, Yan ZJ, Li X, Ji JQ, Zhang HX, Guo HJ, Wang JM (2013) Putative Thinopyrum intermedium-derived stripe rust resistance gene Yr50 maps on wheat chromosome arm 4BL. Theor Appl Genet 126:265–274

    Article  CAS  PubMed  Google Scholar 

  • Liu Z, Xu M, Xiang Z, Li X, Chen W, Luo P (2014) Registration of the novel wheat lines L658, L693, L696, and L699, which are resistant to Fusarium head blight, stripe rust, and powdery mildew. J Plant Regist. doi:10.3198/jpr2014.01.0003crg

    Google Scholar 

  • Luo PG, Hu XY, Ren ZL, Zhang HY, Shu K, Yang ZJ (2008) Allelic analysis of stripe rust resistance genes on wheat chromosome 2BS. Genome 51:922–927

    Article  CAS  PubMed  Google Scholar 

  • Luo PG, Hu XY, Chang ZJ, Zhang M, Zhang HQ, Ren ZL (2009a) A new stripe rust resistance gene transferred from Thinopyrum intermedium to hexaploid wheat (Triticum aestivum). Phytoprotection 90:57–63

    Article  CAS  Google Scholar 

  • Luo PG, Hu XY, Zhang HY, Ren ZL (2009b) Genes for resistance to stripe rust on chromosome 2B and their application in wheat breeding. Prog Nat Sci 19:9–15

    Article  CAS  Google Scholar 

  • Luo PG, Luo HY, Chang ZJ, Zhang HY, Zhang M, Ren ZL (2009c) Characterization and chromosomal location of Pm40 in common wheat: a new gene for resistance to powdery mildew derived from Elytrigia intermedium. Theor Appl Genet 118:1059–1064

    Article  CAS  PubMed  Google Scholar 

  • Ma Q, Luo PG, Ren ZL, Jiang HR, Yang ZJ (2007) Genetic analysis and chromosomal location of two genes for resistance to powdery mildew in wheat (Triticum aestivum L.). Acta Agron Sin 33:1–8

    Google Scholar 

  • Michelmore RW, Paran I, Kesseli RV (1991) Identification of markers linked to disease resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregation populations. Proc Natl Acad Sci USA 88:9828–9832

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mohler V, Bauer C, Schweizer G, Kempf H, Hartl L (2013) Pm50: a new powdery mildew resistance gene in common wheat derived from cultivated emmer. J Appl Genet 54:259–263

    Article  CAS  PubMed  Google Scholar 

  • PiarulliL Gadaleta A, Mangini G, Signorile MA, Pasquini M, Blanco A, Simeone R (2012) Molecular identification of a new powdery mildew resistance gene on chromosome 2BS from Triticum turgidum ssp. dicoccum. Plant Sci 196:101–106

    Article  Google Scholar 

  • Plaschke J, Börner A, Wendehake K, Ganal MW, Röder MS (1996) The use of aneuploids for the chromosomal assignment of microsatellite loci. Euphytica 89:33–40

    Article  CAS  Google Scholar 

  • Qi LL, Echalier B, Set C et al (2004) A chromosome bin map of 16,000 expressed sequence tag loci and distribution of genes among the three genomes of polyploid wheat. Genetics 168:701–712

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Röder MS, Korzun V, Wendehake K, Plaschke J, Tixier MH, Leroy P, Ganal MW (1998) A microsatellite map of wheat. Genetics 149:2007–2023

    PubMed Central  PubMed  Google Scholar 

  • Rong JK, Millet E, Manisterski J, Feldman M (2000) A new powdery mildew resistance gene: introgression from wild emmer into common wheat and RFLP-based mapping. Euphytica 115:121–126

    Article  CAS  Google Scholar 

  • Rozen S, Skaletsky H (2000) Primer3 on the WWW for general users and for biologist programmers. Methods Mol Biol 132:365–386

    CAS  PubMed  Google Scholar 

  • Shi Y, Wang B, Li Q, Wu X, Wang F, Liu H, Tian Y, Liu Q (2009) Analysis on the virulent genes of Erysiphe graminis f. sp. tritici and the resistance genes of wheat commercial cultivars in Shanxi Province. J Triticeae Crops 29:706–711

    CAS  Google Scholar 

  • Somers DJ, Isaac P, Edwards K (2004) A high-density microsatellite consensus map for bread wheat (Triticum aestivum L.). Theor Appl Genet 109:1105–1114

    Article  CAS  PubMed  Google Scholar 

  • Song QJ, Fickus EW, Cregan PB (2002) Characterization of trinucleotide SSR motifs in wheat. Theor Appl Genet 104:286–293

    Article  CAS  PubMed  Google Scholar 

  • Sorrells ME, La Rota M, Bermudez-Kandianis CE et al (2003) Comparative DNA sequence analysis of wheat and rice genomes. Genome Res 13:1818–1827

    PubMed Central  CAS  PubMed  Google Scholar 

  • Tai TH, Tanksley SD (1990) A rapid and inexpensive method for isolation of total DNA from dehydrated plant tissue. Plant Mol Biol Rep 8:297–303

    Article  Google Scholar 

  • The International Brachypodium Initiative (2010) Genome sequencing and analysis of the model grass Brachypodium distachyon. Nature 463:763–768

    Article  Google Scholar 

  • Yang L, Xiang L, Zeng F, Wang H, Shi W, Yu D (2009) Virulence gene structure analysis of Blumeria graminis f. sp. tritici in Hubei. Plant Prot 35:76–79

    Google Scholar 

  • Yang L, Zeng F, Gong S, Shi W, Zhang X, Wang H, Xiang L, Yu D (2013) Evaluation of resistance to powdery mildew in 68 Chinese major wheat cultivars and postulation of their resistance genes. Sci Agric Sin 46:3354–3368

    CAS  Google Scholar 

  • Young ND, Tanksley SD (1989) RFLP analysis of the size chromosomal segments retained around Tm-2 locus of tomato during backcross breeding. Theor Appl Genet 92:1923–1932

    Google Scholar 

  • Zhang L, Chang ZJ, Li X, Zhang HY, Ren ZL, Luo PG (2011) Screen and identification of wheat new resistant germplasms to Fusarium head blight. Zhi Wu Bao Hu XueBao 38:569–570

    Google Scholar 

  • Zhao Z, Sun H, Song W, Lu M, Huang J, Wu L, Wang X, Li H (2013) Genetic analysis and detection of the gene MlLX99 on chromosome 2BL conferring resistance to powdery mildew in the wheat cultivar Liangxing 99. Theor Appl Genet 126:3081–3089

    Article  CAS  PubMed  Google Scholar 

  • Zhuang QS, Li ZS (1993) Present status of wheat breeding and related study in China. Wheat Inf Serv 76:1–5

    Google Scholar 

Download references

Acknowledgments

Financial support was provided by the National Natural Science Foundation of China (31271721), the Provincial Science and Technology Foundation for Young Scientists of Sichuan China (2010JQ0042), the State Key Laboratory for Biology of Plant Disease and Insect Pests, China (SKLOF201410), the Specific Foundation of Agronomy (No. nyhyzx3-15, 201303016), the Key Project of the Education Ministry of China (2012146), and the Ministry of Science and Technology of China (2011CB100403 and 2013CB127701). We are grateful to Dr. R. A. McIntosh (University of Sydney, Australia) and Dr. X. C. Xia [Institute of Crop Science at the National Wheat Improvement Centre of The National Key Facility for Crop Gene Resources and Genetic Improvement of the Chinese Academy of Agricultural Sciences (CAAS) in Beijing, China] for critically reviewing drafts of this paper. We are also grateful to Prof Z. Y. Liu, College of Agriculture and Biotechnology, China Agricultural University, Beijing, for providing many useful suggestions and discussing the manuscript.

Conflict of interest

The authors declare no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. G. Luo.

Additional information

Communicated by Thomas Miedaner.

X. K. Shen and L. X. Ma contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 24 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, X.K., Ma, L.X., Zhong, S.F. et al. Identification and genetic mapping of the putative Thinopyrum intermedium-derived dominant powdery mildew resistance gene PmL962 on wheat chromosome arm 2BS. Theor Appl Genet 128, 517–528 (2015). https://doi.org/10.1007/s00122-014-2449-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-014-2449-x

Keywords

Navigation