Skip to main content
Log in

QTL mapping and phenotypic variation of root anatomical traits in maize (Zea mays L.)

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

Root anatomical trait variation is described for three maize RIL populations. Six quantitative trait loci (QTL) are presented for anatomical traits: root cross-sectional area, % living cortical area, aerenchyma area, and stele area.

Abstract

Root anatomy is directly related to plant performance, influencing resource acquisition and transport, the metabolic cost of growth, and the mechanical strength of the root system. Ten root anatomical traits were measured in greenhouse-grown plants from three recombinant inbred populations of maize [intermated B73 × Mo17 (IBM), Oh43 × W64a (OhW), and Ny821 × H99 (NyH)]. Traits included areas of cross section, stele, cortex, aerenchyma, and cortical cells, percentages of the cortex occupied by aerenchyma, and cortical cell file number. Significant phenotypic variation was observed for each of the traits, with maximum values typically seven to ten times greater than minimum values. Means and ranges were similar for the OhW and NyH populations for all traits, while the IBM population had lower mean values for the majority of traits, but a 50 % greater range of variation for aerenchyma area. A principal component analysis showed a similar trait structure for the three families, with clustering of area and count traits. Strong correlations were observed among area traits in the cortex, stele, and cross-section. The aerenchyma and percent living cortical area traits were independent of other traits. Six QTL were identified for four of the traits. The phenotypic variation explained by the QTL ranged from 4.7 % (root cross-sectional area, OhW population) to 12.0 % (percent living cortical area, IBM population). Genetic variation for root anatomical traits can be harnessed to increase abiotic stress tolerance and provide insights into mechanisms controlling phenotypic variation for root anatomy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Bouranis DL, Chorianopoulou SN, Siyiannis VF et al (2003) Aerenchyma formation in roots of maize during sulphate starvation. Planta 217:382–391

    Article  CAS  PubMed  Google Scholar 

  • Broman KW, Wu H, Sen Ś, Churchill GA (2003) R/qtl: QTL mapping in experimental crosses. Bioinformatics 19:889–890. doi:10.1093/bioinformatics/btg112

    Article  CAS  PubMed  Google Scholar 

  • Burton AL, Lynch JP, Brown KM (2012a) Spatial distribution and phenotypic variation in root cortical aerenchyma of maize (Zea mays L.). Plant Soil 367:263–274. doi:10.1007/s11104-012-1453-7

    Article  Google Scholar 

  • Burton AL, Williams MS, Lynch JP, Brown KM (2012b) RootScan: software for high-throughput analysis of root anatomical traits. Plant Soil 357:189–203

    Article  CAS  Google Scholar 

  • Burton AL, Brown KM, Lynch JP (2013) Phenotypic diversity of root anatomical and architectural traits in Zea species. Crop Sci 53:1042–1055. doi:10.2135/cropsci2012.07.0440

    Article  Google Scholar 

  • Burton AL, Johnson J, Foerster JM et al (2014) QTL mapping and phenotypic variation for root architectural traits in maize (Zea mays L.). Theor Appl Genet. doi:10.1007/s00122-014-2353-4

  • Chimungu J, Brown KM, Lynch JP (2014a) Reduced root cortical cell file number improves drought tolerance in maize. Plant Physiol (in press)

  • Chimungu JG, Maliro MF, Nalivata PC, et al (2014b) Utility of root cortical aerenchyma under water limited conditions in tropical maize (Zea mays L.). F Crop Res (in press)

  • Chimungu JG, Brown K, Lynch J (2014c) Large root cortical cell size improves drought tolerance in maize (Zea mays L.). Plant Physiol. doi:10.1104/pp.114.250449

  • Coaker GL, Meulia T, Kabelka EA et al (2002) A QTL controlling stem morphology and vascular development in Lycopersicon esculentum X Lycopersicon hirsutum (Solanaceae) crosses is located on chromosome 2. Am J Bot 89:1859–1866

    Article  CAS  PubMed  Google Scholar 

  • Collins NC, Tardieu F, Tuberosa R (2008) Quantitative trait loci and crop performance under abiotic stress: where do we stand? Plant Physiol 147:469–486. doi:10.1104/pp.108.118117

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Crook MJ, Ennos AR, Sellers EK (1994) Structural development of the shoot and root systems of two winter wheat cultivars, Triticum aestivum L. J Exp Bot 45:857–863. doi:10.1093/jxb/45.6.857

    Article  Google Scholar 

  • Deacon JW, Lewis SJ (1982) Natural senescence of the root cortex of spring wheat in relation to susceptibility to common root rot (Cochliobolus sativus) and growth of a free-living nitrogen-fixing bacterium. Plant Soil 66:13–20. doi:10.1007/BF02203397

    Article  Google Scholar 

  • Drew MC, Jackson MB, Giffard S (1979) Ethylene-promoted adventitious rooting and development of cortical air spaces (aerenchyma) in roots may be adaptive responses to flooding Zea mays L. Planta 147:83–88

    Article  CAS  PubMed  Google Scholar 

  • Fan MS, Zhu JM, Richards C et al (2003) Physiological roles for aerenchyma in phosphorus-stressed roots. Funct Plant Biol 30:493–506

    Article  Google Scholar 

  • Ferris R, Long L, Bunn SM et al (2002) Leaf stomatal and epidermal cell development: identification of putative quantitative trait loci in relation to elevated carbon dioxide concentration in poplar. Tree Physiol 22:633–640. doi:10.1093/treephys/22.9.633

    Article  CAS  PubMed  Google Scholar 

  • Hai L, Guo H, Xiao S et al (2005) Quantitative trait loci (QTL) of stem strength and related traits in a doubled-haploid population of wheat (Triticum aestivum L.). Euphytica 141:1–9. doi:10.1007/s10681-005-4713-2

    Article  CAS  Google Scholar 

  • Hao Z, Li X, Liu X et al (2009) Meta-analysis of constitutive and adaptive QTL for drought tolerance in maize. Euphytica 174:165–177. doi:10.1007/s10681-009-0091-5

    Article  Google Scholar 

  • Jaramillo RE, Nord EA, Chimungu JG et al (2013) Root cortical burden influences drought tolerance in maize. Ann Bot 112:1–9. doi:10.1093/aob/mct069

    Article  Google Scholar 

  • Johnson SN, Hallett PD, Gillespie TL, Halpin C (2010) Below-ground herbivory and root toughness: a potential model system using lignin-modified tobacco. Physiol Entomol 35:186–191. doi:10.1111/j.1365-3032.2010.00723.x

    Article  CAS  Google Scholar 

  • Jung JKH, McCouch S (2013) Getting to the roots of it: genetic and hormonal control of root architecture. Front Plant Sci. doi:10.3389/fpls.2013.00186

    Google Scholar 

  • Justin S, Armstrong W (1987) The anatomical characteristics of roots and plant response to soil flooding. New Phytol 106:465–495

    Article  Google Scholar 

  • Kondo M, Aguilar A, Abe J, Morita S (2000) Anatomy of nodal roots in tropical upland and lowland rice varieties. Plant Prod Sci 3:437–445

    Article  Google Scholar 

  • Konings H, Verschuren G (1980) Formation of aerenchyma in roots of Zea mays in aerated solutions, and its relation to nutrient supply. Physiol Plant 49:265–279

    Article  CAS  Google Scholar 

  • Lauri P-É, Gorza O, Cochard H et al (2011) Genetic determinism of anatomical and hydraulic traits within an apple progeny. Plant Cell Environ 34:1276–1290. doi:10.1111/j.1365-3040.2011.02328.x

    Article  PubMed  Google Scholar 

  • Lynch JP (2007) Rhizoeconomics: the roots of shoot growth limitations. HortScience 42:1107–1109

    Google Scholar 

  • Lynch JP (2011) Root phenes for enhanced soil exploration and phosphorus acquisition: tools for future crops. Plant Physiol 156:1041–1049. doi:10.1104/pp.111.175414

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lynch JP (2013) Steep, cheap and deep: an ideotype to optimize water and N acquisition by maize root systems. Ann Bot 112:347–357. doi:10.1093/aob/mcs293

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lynch JP, Brown KM (2012) New roots for agriculture: exploiting the root phenome. Philos Trans R Soc London Ser B Biol Sci 367:1598–1604

    Article  Google Scholar 

  • Lynch JP, Ho MD (2005) Rhizoeconomics: carbon costs of phosphorus acquisition. Plant Soil 269:45–56

    Article  CAS  Google Scholar 

  • Mano Y, Omori F (2008) Verification of QTL controlling root aerenchyma formation in a maize x teosinte “Zea nicaraguensis” advanced backcross population. Breed Sci 58:217–223

    Article  Google Scholar 

  • Mano Y, Muraki M, Fujimori M et al (2005) Identification of QTL controlling adventitious root formation during flooding conditions in teosinte (Zea mays ssp huehuetenangensis) seedlings. Euphytica 142:33–42

    Article  Google Scholar 

  • Mano Y, Omori F, Takamizo T et al (2006) Variation for root aerenchyma formation in flooded and non-flooded maize and teosinte seedlings. Plant Soil 281:269–279

    Article  CAS  Google Scholar 

  • Mano Y, Omori F, Takamizo T et al (2007) QTL mapping of root aerenchyma formation in seedlings of a maize x rare teosinte “Zea nicaraguensis” cross. Plant Soil 295:103–113

    Article  CAS  Google Scholar 

  • Mano Y, Omori F, Kindiger B, Takahashi H (2008) A linkage map of maize x teosinte Zea luxurians and identification of QTLs controlling root aerenchyma formation. Mol Breed 21:327–337. doi:10.1007/s11032-007-9132-8

    Article  CAS  Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants, 2nd edn. p 889

  • Niklas KJ (1994) Plant allometry: the scaling of form and process. University of Chicago Press, Chicago

    Google Scholar 

  • R Development Core Team (2010) R: a language and environment for statistical computing

  • Ranathunge K, Thomas RH, Fang X et al (2008) Soybean root suberin and partial resistance to root rot caused by Phytophthora sojae. Phytopathology 98:1179–1189. doi:10.1094/PHYTO-98-11-1179

    Article  PubMed  Google Scholar 

  • Richards RA, Passioura JB (1989) A breeding program to reduce the diameter of the major xylem vessel in the seminal roots of wheat and its effect on grain yield in rain-fed environments. Aust J Agric Res 40:943–950. doi:10.1071/AR9890943

    Article  Google Scholar 

  • Ron M, Dorrity MW, de Lucas M et al (2013) Identification of novel loci regulating inter-specific variation in root morphology and cellular development in tomato. Plant Physiol 162:755–768. doi:10.1104/pp.113.217802

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Saengwilai P, Nord EA, Chimungu JG, Brown KM, Lynch JP (2014) Root cortical aerenchyma enhances nitrogen acquisition from low nitrogen soils in maize (Zea mays L.). Plant Physiol 166(2):726–735. doi:10.1104/pp.114.241711

  • Semagn K, Beyene Y, Warburton ML et al (2013) Meta-analyses of QTL for grain yield and anthesis silking interval in 18 maize populations evaluated under water-stressed and well-watered environments. BMC Genom 14:313. doi:10.1186/1471-2164-14-313

    Article  Google Scholar 

  • Sharma S, Demason D, Ehdaie B et al (2010) Dosage effect of the short arm of chromosome 1 of rye on root morphology and anatomy in bread wheat. J Exp Bot 61:2623–2633. doi:10.1093/jxb/erq097

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sieber T, Grunig C (2013) Fungal root endophytes. Plant Roots Hidden Half, 4th edn. CRC Press, Boca Raton, pp 38-1–38-49

    Google Scholar 

  • Striker GG, Insausti P, Grimoldi AA, Vega AS (2007) Trade-off between root porosity and mechanical strength in species with different types of aerenchyma. Plant Cell Environ 30:580–589

    Article  CAS  PubMed  Google Scholar 

  • Stringfield G (1959) Maize inbred lines of Ohio. Ohio Agric Exp Stn Bull. p 831

  • Thomas R, Fang X, Ranathunge K et al (2007) Soybean root suberin: anatomical distribution, chemical composition, and relationship to partial resistance to Phytophthora sojae. Plant Physiol 144:299–311. doi:10.1104/pp.106.091090

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tombesi S, Johnson RS, Day KR, DeJong TM (2010) Relationships between xylem vessel characteristics, calculated axial hydraulic conductance and size-controlling capacity of peach rootstocks. Ann Bot 105:327–331. doi:10.1093/aob/mcp281

    Article  PubMed Central  PubMed  Google Scholar 

  • Trachsel S, Kaeppler S, Brown KM, Lynch JP (2011) Shovelomics: high throughput phenotyping of maize (Zea mays L.) root architecture in the field. Plant Soil 341:75–87. doi:10.1007/s11104-010-0623-8

    Article  CAS  Google Scholar 

  • Troyer AF (2004) Persistent and popular germplasm in seventy centuries of corn evolution. In: Smith CW, Betran J, Runge ECA (eds) Corn: Orig. Hist. Technol. Prod. Wiley, Hoboken, pp 133–232

    Google Scholar 

  • Tuberosa R, Salvi S, Sanguineti M et al (2003) Searching for quantitative trait loci controlling root traits in maize: a critical appraisal. Plant Soil 255:35–54

    Article  CAS  Google Scholar 

  • Tuberosa R, Salvi S, Giuliani S et al (2011) Genomics of root architecture and functions in maize. In: Varshney RK, Costa de Oliveira A (eds) Root Genomics. Springer, Berlin, pp 179–204

    Chapter  Google Scholar 

  • Uga Y, Okuno K, Yano M (2008) QTLs underlying natural variation in stele and xylem structures of rice root. Breed Sci 58:7–14

    Article  CAS  Google Scholar 

  • Uga Y, Ebana K, Abe J et al (2009) Variation in root morphology and anatomy among accessions of cultivated rice (Oryza sativa L.) with different genetic backgrounds. Breed Sci 59:87–93

    Article  Google Scholar 

  • Uga Y, Okuno K, Yano M (2010) Fine mapping of Sta1, a quantitative trait locus determining stele transversal area, on rice chromosome 9. Mol Breed 26:533–538. doi:10.1007/s11032-010-9450-0

    Article  Google Scholar 

  • Valenzuela-Estrada LR, Bryla DR, Hoashi-Erhardt WK et al (2012) Root traits associated with Phytophthora root rot resistance in red raspberry. Acta Hortic 946:283–287

    Google Scholar 

  • Wang S, Basten CJ, Zeng Z-B (2006) Windows QTL Cartographer 2–5

  • Wasson P, Richards R, Chatrath R et al (2012) Traits and selection strategies to improve root systems and water uptake in water-limited wheat crops. J Exp Bot 63:3485–3498. doi:10.1093/jxb/ers111

    Article  CAS  PubMed  Google Scholar 

  • Wenzel CL, McCully ME (1991) Early senescence of cortical cells in the roots of cereals. How good is the evidence? Am J Bot 78:1528–1541

    Article  Google Scholar 

  • York LM, Nord EA, Lynch JP (2013) Integration of root phenes for soil resource acquisition Integration of root phenes for soil resource acquisition. Front Plant Sci 4. doi: 10.3389/fpls.2013.00355 (article 355)

  • Zeng ZB (1994) Precision mapping of quantitative trait loci. Genetics 136:1457–1468

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhu JM, Brown KM, Lynch JP (2010) Root cortical aerenchyma improves the drought tolerance of maize (Zea mays L.). Plant Cell Environ 33:740–749. doi:10.1111/j.1365-3040.2009.02099.x

    PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Lauren Gelesh, Johanna Mirenda, and Robert Snyder for technical assistance, and Anushree Sanyal for assistance with the QTL analysis. This work was supported by United States Department of Agriculture National Research Initiative [Grant # 207-35100-18365 to JPL and KMB].

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standards

The research described in this paper complies with the current laws of the country in which it was performed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kathleen M. Brown.

Additional information

Communicated by Matthias Frisch.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Burton, A.L., Johnson, J., Foerster, J. et al. QTL mapping and phenotypic variation of root anatomical traits in maize (Zea mays L.). Theor Appl Genet 128, 93–106 (2015). https://doi.org/10.1007/s00122-014-2414-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-014-2414-8

Keywords

Navigation