Skip to main content
Log in

Applying association mapping and genomic selection to the dissection of key traits in elite European wheat

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

We show the application of association mapping and genomic selection for key breeding targets using a large panel of elite winter wheat varieties and a large volume of agronomic data.

Abstract

The heightening urgency to increase wheat production in line with the needs of a growing population, and in the face of climatic uncertainty, mean new approaches, including association mapping (AM) and genomic selection (GS) need to be validated and applied in wheat breeding. Key adaptive responses are the cornerstone of regional breeding. There is evidence that new ideotypes for long-standing traits such as flowering time may be required. In order to detect targets for future marker-assisted improvement and validate the practical application of GS for wheat breeding we genotyped 376 elite wheat varieties with 3,046 DArT, single nucleotide polymorphism and gene markers and measured seven traits in replicated yield trials over 2 years in France, Germany and the UK. The scale of the phenotyping exceeds the breadth of previous AM and GS studies in these key economic wheat production regions of Northern Europe. Mixed-linear modelling (MLM) detected significant marker-trait associations across and within regions. Genomic prediction using elastic net gave low to high prediction accuracies depending on the trait, and could be experimentally increased by modifying the constituents of the training population (TP). We also tested the use of differentially penalised regression to integrate candidate gene and genome-wide markers to predict traits, demonstrating the validity and simplicity of this approach. Overall, our results suggest that whilst AM offers potential for application in both research and breeding, GS represents an exciting opportunity to select key traits, and that optimisation of the TP is crucial to its successful implementation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Allen AM, Barker GLA, Wilkinson P, Burridge A, Winfield M, Coghill J, Uauy C, Griffiths S, Jack P, Berry S et al (2012) Discovery and development of exome-based, co-dominant single nucleotide polymorphism markers in hexaploid wheat (Triticum aestivum L.). Plant Biotech J 11:279–295

    Article  Google Scholar 

  • Båga M, Chodaparambi SV, Limin AE, Pecar M, Fowler DB, Chibbar RN (2007) Identification of quantitative trait loci and associated candidate genes for low-temperature tolerance in cold-hardy winter wheat. Funct Integr Genomics 7:53–68

    Article  PubMed  Google Scholar 

  • Balyan HS, Gupta PK, Kumar S, Dhariwal R, Jaiswal V, Tyagi S, Agarwal P, Gahlaut V, Kumari S (2013) Genetic improvement of grain protein content and other health-related constituents of wheat grain. Plant Breed. doi:10.1111/pbr.12047

    Google Scholar 

  • Beales J, Turner A, Griffiths S, Snape JW, Laurie DA (2007) A Pseudo-Response Regulator is misexpressed in the photoperiod insensitive Ppd-D1a mutant of wheat (Triticum aestivum L.). Theor Appl Genet 115:721–733

    Article  CAS  PubMed  Google Scholar 

  • Beddington J (2009) Food, energy, water and the climate: a perfect storm of global events? http://www.dius.gov.uk/assets/goscience/docs/p/perfect-storm-paper.pdf. Accessed 9 Jan 2014

  • Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc B57:289–300

    Google Scholar 

  • Bennett D, Izanloo A, Reynolds M, Kuchel H, Langridge P, Schnurbusch T (2012a) Genetic dissection of grain yield and physical grain quality in bread wheat (Triticum aestivum L.) under water-limited environments. Theor Appl Genet 125:255–271

    Article  PubMed  Google Scholar 

  • Bennett D, Reynolds M, Mullan D, Izanloo A, Kuchel H, Langridge P, Schnurbusch T (2012b) Detection of two major grain yield QTL in bread wheat (Triticum aestivum L.) under heat, drought and high yield potential environments. Theor Appl Genet 125:1473–1485

    Article  PubMed  Google Scholar 

  • Bentley AR, Turner AS, Gosman N, Leigh FJ, Maccaferri M, Dreisigacker S, Greenland A, Laurie DA (2011) Frequency of the photoperiod-insensitive Ppd-A1a alleles in tetraploid, hexaploid and synthetic hexaploid wheat germplasm. Plant Breed 130:10–15

    Article  CAS  Google Scholar 

  • Bentley AR, Horsnell R, Werner CP, Turner AS, Rose GA, Bedard C, Howell P, Wilhelm EP, Mackay IJ, Howells RM et al (2013) Short, natural, and extended photoperiod response in BC2F4 lines of bread wheat with different Photoperiod-1 (Ppd-1) alleles. Exp Bot 64:1783–1793

    Article  CAS  Google Scholar 

  • Bernardo R (2009) Genomewide selection for rapid introgression of exotic germplasm in maize. Crop Sci 49:419–425

    Article  Google Scholar 

  • Bodmer WF (1987) Human genetics: the molecular challenge. BioEssays 7:41–45

    Article  CAS  PubMed  Google Scholar 

  • Borrell A, Incoll LD, Dalling MJ (1990) The influence of the Rht 1 and Rht 2 alleles on the growth of wheat stems and ears. Ann Bot 67:103–110

    Google Scholar 

  • Carter AH, Santra DK, Kidwell KK (2012) Assessment of the effects of the Gpc-B1 allele on senescence rate, grain protein concentration and mineral content in hard red spring wheat (Triticum aestivum L.) from the Pacific Northwest Region of the USA. Plant Breed 131:62–68

    Article  CAS  Google Scholar 

  • Clark SA, Hickey JM, van der Werf JHJ (2011) Different models of genetic variation and their effect on genomic evaluation. Genet Sel Evol 43:18

    Article  PubMed Central  PubMed  Google Scholar 

  • Crossa J, Burgueno J, Dreisigacker S, Vargas M, Herrera-Foessel SA, Lillemo M, Singh RP, Trethowan R, Warburton M, Franco J et al (2007) Association analysis of historical bread wheat germplasm using additive genetic covariance of relatives and population structure. Genetics 177:1889–1913

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Davison CA, Hinkley DV (1997) Bootstrap methods and their applications. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • de Froidmont D (1998) A co-dominant marker for the 1BL/1RS wheat-rye translocation via multiplex PCR. J Cereal Sci 27:229–232

    Article  Google Scholar 

  • DEFRA (2012) http://webarchive.nationalarchives.gov.uk/20130123162956/http:/www.defra.gov.uk/statistics/files/defra-stats-foodfarm-landuselivestock-farmingstats-june-statsrelease-jun2012ukprovcrops-1210151.pdf. Accessed 9 Jan 2014

  • Diaz A, Zikhali M, Turner AS, Isaac P, Laurie DA (2012) Copy number variation affecting the Photoperiod-B1 and Vernalisation-A1 genes is associated with altered flowering time in wheat (Triticum aestivum). PLoS ONE 7:e33234

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Distelfeld A, Uauy C, Olmos S, Schlatter AR, Dubcovsky J, Fahima T (2004) Microcolinearity between a 2-cM region encompassing the grain protein content locus Gpc-6B1 on wheat chromosome 6B and a 350-kb region on rice chromosome 2. Funct Integr Genomics 4:59–66

    Article  CAS  PubMed  Google Scholar 

  • Distelfeld A, Uauy C, Fahima T, Dubcovsky J (2006) Physical map of the wheat high-grain protein content gene Gpc-B1 and development of a high-throughput molecular marker. New Phytol 169:753–763

    Article  CAS  PubMed  Google Scholar 

  • Ellis MH, Spielmeyer W, Gale KR, Rebetzke GJ, Richards RA (2002) “Perfect” markers for the Rht-B1b and Rht-D1b dwarfing genes in wheat. Theor Appl Genet 105:1038–1042

    Article  CAS  PubMed  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620

    Article  CAS  PubMed  Google Scholar 

  • Fu D, Szuchs P, Yan L, Helguera M, Skinner JS, von Zitzewitz J, Hayes PM, Dubcovsky J (2005) Large deletions within the first intron in VRN-1 are associated with spring growth habit in barley and wheat. Mol Genet Genomics 273:54–65

    Article  CAS  PubMed  Google Scholar 

  • Fulton TM, Chunwongse J, Tanksley SD (1995) Microprep protocol for extraction of DNA from tomato and other herbaceous plants. Plant Mol Biol Rep 13:207–209

    Article  CAS  Google Scholar 

  • Goeman JJ, Meijer R, Chaturvedi N (2012) Penalized. R package version 0.9-41. http://cran.r-project.org/web/packages/penalized/penalized.pdf

  • Griffiths S, Simmonds J, Leverington M, Wang Y, Fish L, Sayers L, Alibert L, Orford S, Wingen L, Herry L et al (2009) Meta-QTL analysis of the genetic control of ear emergence in elite European winter wheat germplasm. Theor Appl Genet 119:383–395

    Article  CAS  PubMed  Google Scholar 

  • Groos C, Robert N, Bervas E, Charmet G (2003) Genetic analysis of grain protein-content, grain yield and thousand-kernel weight in bread wheat. Theor Appl Genet 106:1032–1040

    CAS  PubMed  Google Scholar 

  • Habier D, Tetens J, Seefried F-R, Lichtner P, Thaller G (2010) The impact of genetic relationship information on genomic breeding values in German Holstein cattle. Genet Sel Evol 42:5

    Article  PubMed Central  PubMed  Google Scholar 

  • Hastie T, Tibshirani R, Narasimhan B and Chu G (2013) Impute: Imputation for microarray data. R package version 1.34.0. http://master.bioconductor.org/packages/release/bioc/manuals/impute/man/impute.pdf

  • Hayes BJ, Bowman PJ, Chamberlain AJ, Goddard ME (2009) Genomic selection in dairy cattle: progress and challenges. J Dairy Sci 92:433–444

    Article  CAS  PubMed  Google Scholar 

  • Hedden P (2003) The genes of the green revolution. Trends Genet 19:5–9

    Article  CAS  PubMed  Google Scholar 

  • HGCA (2012). http://www.hgca.com/document.aspx?fn=load&media_id=8124&publicationId=5624. Accessed 9 Jan 2014

  • Hickey JM, Dreisigacker S, Crossa J, Hearne S, Babu R, Prasanna BM, Grondona M, Zambelli A, Windhausen VS, Mathews K, Gorjanc G (2014) Evaluation of genomic selection training population designs and genotyping strategies in plant breeding programs using simulation. Crop Sci 54:1476–1488

    Article  Google Scholar 

  • Hook SCW (1984) Specific weight and wheat quality. J Sci Food Agric 35:1136–1141

    Article  Google Scholar 

  • Huang XQ, Cloutier S, Lycar L, Radovanovic N, Humphreys DG, Noll JS, Somers DJ, Brown PD (2006) Molecular detection of QTLs for agronomic and quality traits in a doubled haploid population derived from two Canadian wheats (Triticum aestivum L.). Theor Appl Genet 113:753–766

    Article  CAS  PubMed  Google Scholar 

  • Huang BE, George AW, Forrest KL, Kilian A, Hayden MJ, Morell MK, Cavanagh CR (2012) A multiparent advanced generation inter-cross population for genetic analysis in wheat. Plant Biotech J 10:826–839

    Article  CAS  Google Scholar 

  • Jannink JL (2007) Identifying quantitative trait locus by genetic background interactions in association studies. Genetics 176:553–561

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Joppa LR, Du C, Hart GE, Hareland GA (1997) Mapping gene(s) for grain protein in tetraploid wheat (Triticum turgidum L.) using a population of recombinant inbred chromosome lines. Crop Sci 37:1586–1589

    Article  CAS  Google Scholar 

  • Kang HM, Zaitlen NA, Wade CM, Kirby A, Heckerman D, Daly MJ, Eskin E (2008) Efficient control of population structure in model organism association mapping. Genetics 178:1709–1723

    Article  PubMed Central  PubMed  Google Scholar 

  • Kato K, Miura H, Sawada S (2000) Mapping QTLs controlling grain yield and its components on chromosome 5A of wheat. Theor Appl Genet 101:1114–1121

    Article  CAS  Google Scholar 

  • Kibite S, Evans LE (1984) Causes of negative correlations between grain yield and grain protein concentration in common wheat. Euphytica 33:801–810

    Article  Google Scholar 

  • Korzun V, Roder MS, Ganal MW, Worland AJ, Law CN (1998) Genetic analysis of the dwarfing gene (Rht8) in wheat. Part I. Molecular mapping of Rht8 on the short arm of chromosome 2D of bread wheat. (Triticum aestivum L.). Theor Appl Genet 96:1104–1109

    Article  CAS  Google Scholar 

  • Lewis CM (2002) Genetic association studies: design, analysis and interpretation. Brief Bioinform 3:146–153

    Article  CAS  PubMed  Google Scholar 

  • Lipka AE, Tian F, Wang Q, Peiffer J, Li M, Bradbury PJ, Gore M, Buckler ES, Zhang Z (2012) GAPIT: genome association and prediction integrated tool. Bioinformatics 28:2397–2399

    Article  CAS  PubMed  Google Scholar 

  • Maccaferri M, Sanguineti MC, Demontis A, El-Ahmed A, Garcia del Moral L, Maalouf F, Nachit M, Nserallah N, Ouabbou H, Rhouma S et al (2011) Association mapping in durum wheat grown across a broad range of water regimes. J Exp Bot 62:409–438

    Article  CAS  PubMed  Google Scholar 

  • Mackay I, Horwell A, Garner J, White J, McKee J, Philpott H (2011) Reanalyses of the historical series of UK variety trials to quantify the contributions of genetic and environmental factors to trends and variability in yield over time. Theor Appl Genet 122:225–238

    Article  CAS  PubMed  Google Scholar 

  • Marchini JL (2013). Popgen: statistical and population genetics. R package version 1.0-3. http://cran.r-project.org/web/packages/popgen/popgen.pdf

  • Marza F, Bai G-H, Carver BF, Zhou W-C (2006) Quantitative trait loci for yield and related traits in the wheat population Ning7840 x Clark. Theor Appl Genet 112:688–698

    Article  CAS  PubMed  Google Scholar 

  • Meuwissen THE, Hayes BJ, Goddard ME (2001) Prediction of total genetic value using genome-wide dense marker maps. Genetics 157:1819–1829

    CAS  PubMed Central  PubMed  Google Scholar 

  • Neumann K, Kobiljski B, Dencic S, Varshney RK, Börner A (2011) Genome-wide association mapping: a case study in bread wheat (Triticum aestivum L.). Mol Breed 27:37–58

    Article  Google Scholar 

  • Olmos S, Distelfeld A, Chicaiza O, Schlatter AR, Fahima T, Echenique V, Dubcovsky J (2003) Precise mapping of a locus affecting grain protein content in durum wheat. Theor Appl Genet 107:1243–1251

    Article  CAS  PubMed  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    CAS  PubMed Central  PubMed  Google Scholar 

  • Quarrie SA, Steed A, Calestani C, Semikhodskii A, Lebreton C, Chinoy C, Steele N, Pljevljakusic D, Waterman E, Weyen J et al (2005) A high-density genetic map of hexaploid wheat (Triticum aestivum L.) from the cross Chinese Spring x SQ1 and its use to compare QTLs for grain yield across a range of environments. Theor Appl Genet 110:865–880

    Article  CAS  PubMed  Google Scholar 

  • Reif JC, Gowda M, Maurer HP, Longin CFH, Korzun V, Edmeyer E, Bothe R, Pietsch C, Würschum T (2011) Association mapping for quality traits in soft winter wheat. Theor Appl Genet 122:961–970

    Article  PubMed  Google Scholar 

  • Segura V, Vilhjálmsson BJ, Platt A, Kortel A, Seren Ü, Long Q, Nordborg M (2012) An efficient multi-locus mixed-model approach for genome-wide association studies in structured populations. Nat Genet 44:825–832

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Simmonds NW (1995) The relation between yield and protein in cereal grain. J Sci Food Agric 67:309–315

    Article  CAS  Google Scholar 

  • Snape JW, Foulkes MJ, Simmonds J, Leverington M, Fish LJ, Wang Y, Ciavarrella M (2007) Dissecting gene x environmental effects on wheat yields via QTL and physiological analysis. Euphytica 154:401–408

    Article  Google Scholar 

  • Sourdille P, Cadalen T, Guyomarch H, Snape JW, Perretant MR, Charmet G, Boeuf C, Bernard S, Bernard M (2003) An update of the Courtot x Chinese Spring intervarietal molecular marker linkage map for the QTL detection of agronomic traits in wheat. Theor Appl Genet 106:530–538

    CAS  PubMed  Google Scholar 

  • Speed D, Balding DJ (2014) MultiBLUP: improved SNP-based prediction for complex traits. Genome Res. doi:10.1101/gr.169375.113

    PubMed Central  PubMed  Google Scholar 

  • Wilhelm EP, Turner AS, Laurie DA (2009) Photoperiod insensitive Ppd-A1a mutations in tetraploid wheat (Triticum durum Desf.). Theor Appl Genet 118:285–294

    Article  CAS  PubMed  Google Scholar 

  • Wilhelm EP, Boulton MI, Al-Kaff N, Balfourier F, Bordes J, Greenland A, Powell W, Mackay IJ (2013) Rht-1 and Ppd-D1 associations with height, GA sensitivity, and days to heading in a worldwide bread wheat collection. Theor Appl Genet. doi:10.1007/s00122-013-2130-9

    Google Scholar 

  • Wimmer V, Albrecht T, Auinger HJ, Schön CC (2012) synbreed: a framework for the analysis of genomic prediction data using R. Bioinformatics 18:2086–2087

    Article  Google Scholar 

  • Worland AJ (1996) The influence of flowering time genes on environmental adaptability in European wheat. Euphytica 89:49–57

    Article  Google Scholar 

  • Yan L, Helguera M, Kato K, Fukuyama S, Sherman J, Dubcovsky J (2004) Allelic variation at the VRN-1 promoter region in polyploidy wheat. Theor Appl Genet 118:1677–1686

    Article  Google Scholar 

  • Yan L, Fu C, Li C, Blechl A, Tranquilli G, Bonafede M, Sanchez A, Valarik M, Yasuda S, Dubcovsky J (2006) The wheat and barley vernalization gene VRN3 is an orthologue of FT. PNAS 103:19581–19586

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zadoks JC, Chang TT, Konzak CF (1974) A decimal code for the growth stages of cereals. Weed Res 14:415–421

  • Zhao K, Aranzana MJ, Kim S, Lister C, Shindo C, Tang C, Toomaijan C, Zheng H, Dean C, Marjoram P, Nordborg M (2007) An Arabidopsis example of association mapping in structured samples. PLoS Genet 3:e4

  • Zhao Y, Gowda M, Wurschum T, Longin CFH, Korzun V, Kollers S, Schachschneider R, Zeng J, Fernando R, Dubcovsky J et al (2013) Dissecting the genetic architecture of frost tolerance in Central European winter wheat. J Exp Bot 64:4453–4460

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhao Y, Mette MF, Gowda M, Longin CFH, Reif JC (2014) Bridging the gap between marker-assisted and genomic selection of heading time and plant height in hybrid wheat. Heredity 112:638–645

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by a Grant from the European Commission under the 7th Framework Programme for Research and Technological Development (FP7-212019). AB was funded by BB/I002561/1 from the UK Biotechnology and Biological Sciences Research Council whilst working on the manuscript. We thank the Editor and three anonymous reviewers for constructive comments for improving the manuscript.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alison R. Bentley.

Additional information

Communicated by Jochen Reif.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 807 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bentley, A.R., Scutari, M., Gosman, N. et al. Applying association mapping and genomic selection to the dissection of key traits in elite European wheat. Theor Appl Genet 127, 2619–2633 (2014). https://doi.org/10.1007/s00122-014-2403-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-014-2403-y

Keywords

Navigation