Skip to main content
Log in

Whole-genome QTL analysis for MAGIC

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

An efficient whole genome method of QTL analysis is presented for Multi-parent advanced generation integrated crosses.

Abstract

Multi-parent advanced generation inter-cross (MAGIC) populations have been developed for mice and several plant species and are useful for the genetic dissection of complex traits. The analysis of quantitative trait loci (QTL) in these populations presents some additional challenges compared with traditional mapping approaches. In particular, pedigree and marker information need to be integrated and founder genetic data needs to be incorporated into the analysis. Here, we present a method for QTL analysis that utilizes the probability of inheriting founder alleles across the whole genome simultaneously, either for intervals or markers. The probabilities can be found using three-point or Hidden Markov Model (HMM) methods. This whole-genome approach is evaluated in a simulation study and it is shown to be a powerful method of analysis. The HMM probabilities lead to low rates of false positives and low bias of estimated QTL effect sizes. An implementation of the approach is available as an R package. In addition, we illustrate the approach using a bread wheat MAGIC population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Bandillo N, Raghavan C, Muyco PA, Sevilla MAL, Lobina IT, Dilla-Ermita CJ, Tung CW, McCouch S, Thomson M, Mauleon R, Singh RK, Gregorio G, Redoa E, Leung H (2013) Multi-parent advanced generation inter-cross (MAGIC) populations in rice: progress and potential for genetics research and breeding. Rice 6:11

    Article  PubMed  Google Scholar 

  • Broman K (2005) The genomes of recombinant inbred lines. Genetics 169:1133–1146

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Broman KW (2006) Use of hidden Markov models for QTL mapping. Technical report. John Hopkins University, Department of Biostatistics, working paper 125

  • Broman KW, Speed TP (2002) A model selection approach for the identification of quantitative trait loci in experimental crosses. J R Stat Soc Ser B 64:641–656

    Article  Google Scholar 

  • Broman KW, Wu H, Sen S, Churchill GA (2003) R/qtl: QTL mapping in experimental crosses. Bioinformatics 19:889–890

    Article  CAS  PubMed  Google Scholar 

  • Broman KW, Wu H, Churchill G, Sen S, Yandell B, et al (2012) qtl: Tools for analyzing QTL experiments. http://CRAN.R-program.org/package=qtl R package version 1.23-16

  • Butler DG, Cullis BR, Gilmour AR, Gogel BJ (2011) Mixed models for S language environments: ASReml-R reference manual. Technical report. Queensland Department of Primary Industries, http://www.vsni.co.uk/software/asreml/

  • Cavanagh C, Morell M, Mackay I, Powell W (2008) From mutations to MAGIC: resources for gene discovery, validation and delivery in crop plants. Curr Opin Plant Biol 11:215–221

    Article  PubMed  Google Scholar 

  • Cavanagh CR, Chao S, Wang S, Huang BE, Stephen S, Kiani S, Forrest K, Saintenac C, Brown-Guedira GL, Akhunova A, See D, Bai G, Pumphrey M, Tomar L, Wong D, Kong S, Reynolds M, da Silva ML, Bockelman H, Talbert L, Anderson JA, Dreisigacker S, Baenziger S, Carter A, Korzun V, Morrell PL, Dubcovsky J, Morell MK, Sorrells ME, Hayden MJ, Akhunov E (2013) Genome-wide comparative diversity uncovers multiple targets of selection for improvement in hexaploid wheat landraces and cultivars. Proc Natl Acad Sci 110:8057–8062. doi:10.1073/pnas.1217133110

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cox DR, Hinkley DV (1974) Theoretical statistics. Chapman and Hall, London

    Book  Google Scholar 

  • Cullis BR, Smith AB, Coombes NE (2006) On the design of early generation variety trials with correlated data. J Agric Biol Environ Stat 11:381–393

    Article  Google Scholar 

  • Gilmour AR, Cullis BR, Verbyla AP (1997) Accounting for natural and extraneous variation in the analysis of field experiments. J Agric Biol Environ Stat 2:269–293

    Article  Google Scholar 

  • Haldane JBS, Waddington CH (1931) Inbreeding and linkage. Genetics 16:357–374

    CAS  PubMed Central  PubMed  Google Scholar 

  • Haley CS, Knott SA (1992) A simple regression method for mapping quantitative trait loci in line crosses using flanking markers. Heredity 69:315–324

    Article  CAS  PubMed  Google Scholar 

  • Huang BE, George AW (2011) R/mpmap: A computational platform for the genetic analysis of multi-parent recombinant inbred lines. Bioinformatics 27:727–729

    Article  CAS  PubMed  Google Scholar 

  • Huang BE, George AW, Forrest KL, Kilian A, Hayden M, Morell MK, Cavanagh CR (2012) A multiparent advanced generation inter-cross population for genetic analysis in wheat. Plant Biotechnol J 10:826–839

    Article  CAS  PubMed  Google Scholar 

  • Jansen RC (1994) Controlling the Type I and Type II errors in mapping quantitative trait loci. Genetics 138:871–881

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kao CH, Zeng ZB, Teasdale RD (1999) Multiple interval mapping for quantitative trait loci. Genetics 152:1203–1216

    CAS  PubMed Central  PubMed  Google Scholar 

  • Keller M, Karutz C, Schmid JE, Stamp P, Winzeler M, Keller B, Messmer MM (1999) Quantitative trait loci for lodging resistance in a segregating wheat x spelt population. Theor Appl Genet 98:1171–1182

    Article  CAS  Google Scholar 

  • Kover PX, Valdar W, Trakalo J, Scarcelli N, Ehrenreich IM, Purugganan MD, Durrant C, Mott R (2009) A multiparent advanced generation inter-cross to fine- map quantitative traits in Arabidopsis thaliana. PLoS Genet 5(e1000):551

    Google Scholar 

  • Malosetti M, van Eewijk FA, Boer MP, Casas MAM, Elia M, Moralejo M, Bhat PR, Ramsey L, Molina-Cano JL (2011) Gene and QTL detection in a three-way barley cross under selection ny a mixed model with kinship information using SNPs. Theor Appl Genet 122:1605–1616

    Article  PubMed Central  PubMed  Google Scholar 

  • Martinez O, Curnow RN (1992) Estimating the locations and the sizes of the effects of quantitative trait loci using flanking markers. Theor Appl Genet 85:480–488

    Article  CAS  PubMed  Google Scholar 

  • Marza F, Bai GH, Carver BF, Zhou WC (2006) Quantitative trait loci for yield and related traits in the wheat population Ning7840 x Clark. Theor Appl Genet 112:688–698

    Article  CAS  PubMed  Google Scholar 

  • McCartney CA, Somers DJ, Humphreys DG, Lukow O, Ames N, Noll J, Cloutier S, McCallum BD (2005) Mapping quantitative trait loci controlling agronomic traits in the spring wheat cross rl4452 x ‘ac domain’. Genome 48:870–883

    Article  CAS  PubMed  Google Scholar 

  • Mott R, Talbot CJ, Turri MG, Collins AC, Flint J (2000) A method for fine mapping quantitative trait loci in outbred animal stocks. Proc Natl Acad Sci USA 97:12,649–12,654

    Article  Google Scholar 

  • Oakey H, Verbyla A, Pitchford W, Cullis B, Kuchel H (2006) Joint modelling of additive and non-additive genetic line effects in single field trials. Theor Appl Genet 113:809–819

    Article  PubMed  Google Scholar 

  • Piessens R, de Doncker-Kapenga E, Uberhuber CW, Kahaner DK (1983) QUADPACK: a subroutine package for automatic integration. Springer, Berlin

    Book  Google Scholar 

  • R Development Core Team (2013) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org, ISBN 3-900051-07-0

  • Rakshit S, Rakshit A, Patil JV (2012) Multiparent intercross populations in analysis of quantitative traits. J Genet 91:111–117

    Article  PubMed  Google Scholar 

  • Smith A, Cullis B, Thompson R (2005) The analysis of crop cultivar breeding and evaluation trials: an overview of current mixed model approaches. J Agric Sci (Cambridge) 143:449–462

    Article  Google Scholar 

  • Smith AB, Lim P, Cullis BR (2006) The design and analysis of multi-phase quality trait experiments. J Agric Sci (Cambridge) 144:393–409

    Article  Google Scholar 

  • Stram DO, Lee JW (1994) Variance components testing in the longitudinal mixed effects model. Biometrics 50:1171–1177

    Article  CAS  PubMed  Google Scholar 

  • Taylor JD, Diffey S, Verbyla AP, Cullis BR (2011) wgaim: Whole genome average interval mapping for QTL detection using mixed models. http://CRAN.R-program.org/package=wgaim R package version 1.1

  • Threadgill DW, Hunter KW, Williams RW (2002) Genetic dissection of complex and quantitative traits: from fantasy to reality via a community effort. Mamm Genome 13:175–178

    Article  CAS  PubMed  Google Scholar 

  • Trebbi D, Maccaferri M, Giuliani S, Sorensen A, Sanquineti MC, Massi A, Tuberosa R (2008) Development of a multi-parental (four-way cross) mapping population for multi-allelic QTL analysis in durum wheat. In: Appels R, Eastwood R, Lagudah E, Langridge P, Mackay M, McIntyre L (eds) The 11th International Wheat Genetics Symposium proceedings. University of Sydney

  • Trow A (1913) Forms of reproduction: primary and secondary. J Genet 2:313–324

    Article  Google Scholar 

  • Valdar W, Flint J, Mott R (2006a) Simulating the collaborative cross: power of quantitative trait loci detection and mapping resolution in large sets of recombinant inbred strains of mice. Genetics 172:1783–1797

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Valdar W, Solberg LC, Gauguier D, Burnett S, Klenerman P, Cookson WO, Taylor MS, Rawlins JNP, Mott R, Flint J (2006b) Genome-wide genetic association of complex traits in heterogeneous stock mice. Nat Genet 38:879–887

    Article  CAS  PubMed  Google Scholar 

  • Verbyla AP (1990) A conditional derivation of residual maximum likelihood. Aust J Stat 32:227–230

    Article  Google Scholar 

  • Verbyla AP, Cullis BR (2012) Multivariate whole genome average interval mapping: QTL analysis for multiple traits and/or environments. Theor Appl Genet 125:933–953

    Article  PubMed  Google Scholar 

  • Verbyla AP, Cullis BR, Thompson R (2007) The analysis of QTL by simultaneous use of the full linkage map. Theor Appl Genet 116:95–111

    Article  PubMed  Google Scholar 

  • Verbyla AP, Taylor JD, Verbyla KL (2012) RWGAIM: An efficient high dimensional random whole genome average (QTL) interval mapping approach. Genet Res 94:291–306

    Article  Google Scholar 

  • Verma V, Worland AJ, Sayers EJ, Fish L, Caligari PDS, Snape JW (2005) Identification and characterization of quantitative trait loci related to lodging resistance and associated traits in bread wheat. Plant Breed 124:234–241

    Article  CAS  Google Scholar 

  • Xu S (1996) Mapping quantitative trait loci using four-way crosses. Genet Res 68:175–181

    Article  Google Scholar 

  • Zeng ZB (1994) Precision mapping of quantitative trait loci. Genetics 136:1457–1468

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank the reviewers and the editor for their constructive comments which lead to major improvements in the paper.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arūnas P. Verbyla.

Additional information

Communicated by Marco Bink.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 82 KB)

Supplementary material 2 (CSV 238 KB)

Appendix

Appendix

The size of \(\mathbf{P}_A\) and hence the number of effects in \(\mathbf{a}\), \((r-c)n_\mathrm{f}\) for interval-based analyses and \(rn_\mathrm{f}\) for marker-based analyses, can be very large. This usually results in the number of effects required to be estimated being bigger than the sample size \(n\). Verbyla et al. (2012) propose an approach that reduces the dimension for model fitting and the same approach can be used for MPWGAIM. This reduces the dimension for model fitting to the number of lines \(n_g\), in the same manner as for the bi-parental situation.

If \(\mathbf{a}^* \sim N(\mathbf 0 , \sigma _a^2 \mathbf{I}_{n_g})\), the model

$$\begin{aligned} \mathbf{u}_g = (\mathbf{P}_A \mathbf{P}_{A}^{\rm T})^{1/2} \mathbf{a}^* + \mathbf{u}_p \end{aligned}$$

results in the same variance model as (7), but the number of effects in \(\mathbf{a}^*\) equals the number of lines \(n_g\). Then as in Verbyla et al. (2012), the BLUPs of \(\mathbf{a}^*\) and \(\mathbf{a}\), denoted by \(\tilde{\mathbf{a}}^*\) and \(\tilde{\mathbf{a}}\) respectively, are related by

$$\begin{aligned} \tilde{\mathbf{a}} = \mathbf{P}_{A}^{\rm T} (\mathbf{P}_A \mathbf{P}_{A}^{\rm T})^{-1/2} \tilde{\mathbf{a}}^* \end{aligned}$$

with variance matrix

$$\begin{aligned} \mathrm{var}\left( \tilde{\mathbf{a}}\right) = \mathbf{P}_{A}^{\rm T} (\mathbf{P}_A \mathbf{P}_{A}^{\rm T})^{-1/2} \mathrm{var}\left( \tilde{\mathbf{a}}^*\right) (\mathbf{P}_A \mathbf{P}_{A}^{\rm T})^{-1/2}\mathbf{P}_A \end{aligned}$$

and only the diagonal elements of this matrix are required in the calculation of the outlier statistics (12). Thus, an efficient computational approach exists for high-dimensional situations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verbyla, A.P., George, A.W., Cavanagh, C.R. et al. Whole-genome QTL analysis for MAGIC. Theor Appl Genet 127, 1753–1770 (2014). https://doi.org/10.1007/s00122-014-2337-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-014-2337-4

Keywords

Navigation