Skip to main content

Advertisement

Log in

Fine mapping of Co-x, an anthracnose resistance gene to a highly virulent strain of Colletotrichum lindemuthianum in common bean

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

The Co - x anthracnose R gene of common bean was fine-mapped into a 58 kb region at one end of chromosome 1, where no canonical NB-LRR-encoding genes are present in G19833 genome sequence.

Abstract

Anthracnose, caused by the phytopathogenic fungus Colletotrichum lindemuthianum, is one of the most damaging diseases of common bean, Phaseolus vulgaris. Various resistance (R) genes, named Co-, conferring race-specific resistance to different strains of C. lindemuthianum have been identified. The Andean cultivar JaloEEP558 was reported to carry Co-x on chromosome 1, conferring resistance to the highly virulent strain 100. To fine map Co-x, 181 recombinant inbred lines derived from the cross between JaloEEP558 and BAT93 were genotyped with polymerase chain reaction (PCR)-based markers developed using the genome sequence of the Andean genotype G19833. Analysis of RILs carrying key recombination events positioned Co-x at one end of chromosome 1 to a 58 kb region of the G19833 genome sequence. Annotation of this target region revealed eight genes: three phosphoinositide-specific phospholipases C (PI-PLC), one zinc finger protein and four kinases, suggesting that Co-x is not a classical nucleotide-binding leucine-rich encoding gene. In addition, we identified and characterized the seven members of common bean PI-PLC gene family distributed into two clusters located at the ends of chromosomes 1 and 8. Co-x is not a member of Co-1 allelic series since these two genes are separated by at least 190 kb. Comparative analysis between soybean and common bean revealed that the Co-x syntenic region, located at one end of Glycine max chromosome 18, carries Rhg1, a major QTL contributing to soybean cyst nematode resistance. The PCR-based markers generated in this study should be useful in marker-assisted selection for pyramiding Co-x with other R genes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adamblondon AF, Sevignac M, Bannerot H, Dron M (1994) SCAR, RAPD and RFLP markers linked to a dominant gene (ARE) conferring resistance to anthracnose in common bean. Theor Appl Genet 88(6–7):865–870. doi:10.1007/bf01253998

    Article  CAS  Google Scholar 

  • Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Alzate Marin AL, Baia GS, dePaula TJ, deCarvalho GA, deBarros EG, Moreira MA (1997) Inheritance of anthracnose resistance in common bean differential cultivar AB 136. Plant Dis 81(9):996–998. doi:10.1094/pdis.1997.81.9.996

    Article  Google Scholar 

  • Alzate-Marin AL, de Souza KA, de Morais Silva MG, de Oliveira EJ, Moreira MA, de Barros EG (2007) Genetic characterization of anthracnose resistance genes Co-4(3) and Co-9 in common bean cultivar tlalnepantla 64 (PI 207262). Euphytica 154(1–2):1–8. doi:10.1007/s10681-006-9253-x

    Article  CAS  Google Scholar 

  • Ameline-Torregrosa C, Wang BB, O’Bleness MS, Deshpande S, Zhu HY, Roe B, Young ND, Cannon SB (2008) Identification and characterization of nucleotide-binding site-Leucine-rich repeat genes in the model plant Medicago truncatula. Plant Physiol 146(1):5–21. doi:10.1104/pp.107.104588

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Andolfo G, Sanseverino W, Rombauts S, Van de Peer Y, Bradeen JM, Carputo D, Frusciante L, Ercolano MR (2013) Overview of tomato (Solanum lycopersicum) candidate pathogen recognition genes reveals important Solanum R locus dynamics. New Phytol 197(1):223–237. doi:10.1111/j.1469-8137.2012.04380.x

    Article  CAS  PubMed  Google Scholar 

  • Asano T, Masuda D, Yasuda M, Nakashita H, Kudo T, Kimura M, Yamaguchi K, Nishiuchi T (2008) AtNFXL1, an Arabidopsis homologue of the human transcription factor NF-X1, functions as a negative regulator of the trichothecene phytotoxin-induced defense response. Plant J 53(3):450–464. doi:10.1111/j.1365-313X.2007.03353.x

    Article  CAS  PubMed  Google Scholar 

  • Bai JF, Pennill LA, Ning JC, Lee SW, Ramalingam J, Webb CA, Zhao BY, Sun Q, Nelson JC, Leach JE, Hulbert SH (2002) Diversity in nucleotide binding site-leucine-rich repeat genes in cereals. Genom Res 12(12):1871–1884

    Article  CAS  Google Scholar 

  • Bannerot H (1965) Résultat de l’infection d’une collection de haricots par six races physiologiques d’anthracnose. Ann Amélior Plantes 15:201–222

    Google Scholar 

  • Barrus MF (1911) Variation of varieties of beans in their susceptibility to anthracnose. Phytopathology 1:190–195

    Google Scholar 

  • Barrus MF (1915) An anthracnose-resistant red kidney bean. Phytopathology 5:303–311

    Google Scholar 

  • Berridge MJ, Irvine RF (1989) Inositol phosphates and cell signalling. Nature 341(6239):197–205. doi:10.1038/341197a0

    Article  CAS  PubMed  Google Scholar 

  • Broughton WJ, Hernandez G, Blair M, Beebe S, Gepts P, Vanderleyden J (2003) Beans (Phaseolus spp.)––model food legumes. Plant Soil 252(1):55–128

    Article  CAS  Google Scholar 

  • Burset M, Guigo R (1996) Evaluation of gene structure prediction programs. Genomics 34(3):353–367

    Article  CAS  PubMed  Google Scholar 

  • Buschges R, Hollricher K, Panstruga R, Simons G, Wolter M, Frijters A, vanDaelen R, vanderLee T, Diergaarde P, Groenendijk J, Topsch S, Vos P, Salamini F, Schulze-Lefert P (1997) The barley mlo gene: a novel control element of plant pathogen resistance. Cell 88(5):695–705. doi:10.1016/s0092-8674(00)81912-1

    Article  CAS  PubMed  Google Scholar 

  • Campa A, Giraldez R, Ferreira JJ (2009) Genetic dissection of the resistance to nine anthracnose races in the common bean differential cultivars MDRK and TU. Theor Appl Genet 119(1):1–11. doi:10.1007/s00122-009-1011-8

    Article  CAS  PubMed  Google Scholar 

  • Chen NWG, Sevignac M, Thareau V, Magdelenat G, David P, Ashfield T, Innes RW, Geffroy V (2010) Specific resistances against Pseudomonas syringae effectors AvrB and AvrRpm1 have evolved differently in common bean (Phaseolus vulgaris), soybean (Glycine max), and Arabidopsis thaliana. New Phytol 187(4):941–956. doi:10.1111/j.1469-8137.2010.03337.x

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chisholm ST, Coaker G, Day B, Staskawicz BJ (2006) Host-microbe interactions: shaping the evolution of the plant immune response. Cell 124(4):803–814

    Article  CAS  PubMed  Google Scholar 

  • Chou WM, Shigaki T, Dammann C, Liu YQ, Bhattacharyya MK (2004) Inhibition of phosphoinositide-specific phospholipase C results in the induction of pathogenesis-related genes in soybean. Plant Biol 6(6):664–672. doi:10.1055/s-2004-830351

    Article  CAS  PubMed  Google Scholar 

  • Cook DE, Lee TG, Guo XL, Melito S, Wang K, Bayless AM, Wang JP, Hughes TJ, Willis DK, Clemente TE, Diers BW, Jiang JM, Hudson ME, Bent AF (2012) Copy number variation of multiple genes at Rhg1 mediates nematode resistance in soybean. Science 338(6111):1206–1209. doi:10.1126/science.1228746

    Article  CAS  PubMed  Google Scholar 

  • Creusot F, Macadre C, Cana EF, Riou C, Geffroy V, Sevignac M, Dron M, Langin T (1999) Cloning and molecular characterization of three members of the NBS-LRR subfamily located in the vicinity of the Co-2 locus for anthracnose resistance in Phaseolus vulgaris. Genome 42(2):254–264. doi:10.1139/gen-42-2-254

    Article  CAS  PubMed  Google Scholar 

  • Dangl JL, Jones JDG (2001) Plant pathogens and integrated defence responses to infection. Nature 411(6839):826–833

    Article  CAS  PubMed  Google Scholar 

  • Dangl JL, Horvath DM, Staskawicz BJ (2013) Pivoting the plant immune system from dissection to deployment. Science 341(6147):746–751. doi:10.1126/science.1236011

    Article  CAS  PubMed  Google Scholar 

  • David P, Sevignac M, Thareau V, Catillon Y, Kami J, Gepts P, Langin T, Geffroy V (2008) BAC end sequences corresponding to the B4 resistance gene cluster in common bean: a resource for markers and synteny analyses. Mol Genet Genom 280(6):521–533. doi:10.1007/s00438-008-0384-8

    Article  CAS  Google Scholar 

  • David P, Chen NWG, Pedrosa-Harand A, Thareau V, Sevignac M, Cannon SB, Debouck D, Langin T, Geffroy V (2009) A nomadic subtelomeric disease resistance gene cluster in common bean. Plant Physiol 151(3):1048–1065. doi:10.1104/pp.109.142109

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • David P, des Francs-Small CC, Sevignac M, Thareau V, Macadre C, Langin T, Geffroy V (2010) Three highly similar formate dehydrogenase genes located in the vicinity of the B4 resistance gene cluster are differentially expressed under biotic and abiotic stresses in Phaseolus vulgaris. Theor Appl Genet 121(1):87–103. doi:10.1007/s00122-010-1293-x

    Article  CAS  PubMed  Google Scholar 

  • Devoto A, Piffanelli P, Nilsson I, Wallin E, Panstruga R, von Heijne G, Schulze-Lefert P (1999) Topology, subcellular localization, and sequence diversity of the Mlo family in plants. J Biol Chem 274(49):34993–35004. doi:10.1074/jbc.274.49.34993

    Article  CAS  PubMed  Google Scholar 

  • Devoto A, Hartmann HA, Piffanelli P, Elliott C, Simmons C, Taramino G, Goh CS, Cohen FE, Emerson BC, Schulze-Lefert P, Panstruga R (2003) Molecular phylogeny and evolution of the plant-specific seven-transmembrane MLO family. J Mol Evol 56(1):77–88. doi:10.1007/s00239-002-2282-5

    Article  CAS  PubMed  Google Scholar 

  • Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11–15

    Google Scholar 

  • Edgar RC (2004a) MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinform 5:1–19. doi:10.1186/1471-2105-5-113

    Article  Google Scholar 

  • Edgar RC (2004b) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32(5):1792–1797. doi:10.1093/nar/gkh340

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ferrier Cana E, Geffroy V, Macadre C, Creusot F, Imbert Bollore P, Sevignac M, Langin T (2003) Characterization of expressed NBS-LRR resistance gene candidates from common bean. Theor Appl Genet 106(2):251–261

    CAS  PubMed  Google Scholar 

  • Ferrier Cana E, Macadre C, Sevignac M, David P, Langin T, Geffroy V (2005) Distinct post-transcriptional modifications result into seven alternative transcripts of the CC-NBS-LRR gene JA1tr of Phaseolus vulgaris. Theor Appl Genet 110(5):895–905

    Article  CAS  PubMed  Google Scholar 

  • Fisher RA (1937) The design of experiments. Edinburgh, London

    Google Scholar 

  • Fouilloux G (1979) New races of bean anthracnose and consequences on our breeding programs. In: Maraitre H, Meyer JA (eds) Disease of tropical food crops. Université Catholique de Louvain la Neuve, Belgium, pp 221–235

    Google Scholar 

  • Freyre R, Skroch PW, Geffroy V, Adam-Blondon AF, Shirmohamadali A, Johnson WC, Llaca V, Nodari RO, Pereira PA, Tsai SM, Tohme J, Dron M, Nienhuis J, Vallejos CE, Gepts P (1998) Towards an integrated linkage map of common bean. 4. Development of a core linkage map and alignment of RFLP maps. Theor Appl Genet 97(5–6):847–856. doi:10.1007/s001220050964

    Article  CAS  Google Scholar 

  • Fu DL, Uauy C, Distelfeld A, Blechl A, Epstein L, Chen XM, Sela HA, Fahima T, Dubcovsky J (2009) A Kinase-START gene confers temperature-dependent resistance to wheat stripe rust. Science 323(5919):1357–1360. doi:10.1126/science.1166289

    Article  CAS  PubMed  Google Scholar 

  • Geffroy V, Creusot F, Falquet J, Sévignac M, Adam-Blondon AF, Bannerot H, Gepts P, Dron M (1998) A family of LRR sequences in the vicinity of the Co-2 locus for anthracnose resistance in Phaseolus vulgaris and its potential use in marker-assisted selection. Theor Appl Genet 96:494–502

    Article  CAS  PubMed  Google Scholar 

  • Geffroy V, Sicard D, de Oliveira JCF, Sevignac M, Cohen S, Gepts P, Neema C, Langin T, Dron M (1999) Identification of an ancestral resistance gene cluster involved in the coevolution process between Phaseolus vulgaris and its fungal pathogen Colletotrichum lindemuthianum. Mol Plant-Microbe Interact 12(9):774–784

    Article  CAS  PubMed  Google Scholar 

  • Geffroy V, Sevignac M, De Oliveira JCF, Fouilloux G, Skroch P, Thoquet P, Gepts P, Langin T, Dron M (2000) Inheritance of partial resistance against Colletotrichum lindemuthianum in Phaseolus vulgaris and co-localization of quantitative trait loci with genes involved in specific resistance. Mol Plant-Microbe Interact 13(3):287–296. doi:10.1094/mpmi.2000.13.3.287

    Article  CAS  PubMed  Google Scholar 

  • Geffroy V, Sevignac M, Billant P, Dron M, Langin T (2008) Resistance to Colletotrichum lindemuthianum in Phaseolus vulgaris: a case study for mapping two independent genes. Theor Appl Genet 116(3):407–415. doi:10.1007/s00122-007-0678-y

    Article  CAS  PubMed  Google Scholar 

  • Geffroy V, Macadre C, David P, Pedrosa-Harand A, Sevignac M, Dauga C, Langin T (2009) Molecular analysis of a large subtelomeric nucleotide-binding-site-leucine-rich-repeat family in two representative genotypes of the major gene pools of Phaseolus vulgaris. Genetics 181(2):405–419. doi:10.1534/genetics.108.093583

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Goncalves-Vidigal MC, Kelly JD (2006) Inheritance of anthracnose resistance in the common bean cultivar Widusa. Euphytica 151(3):411–419. doi:10.1007/s10681-006-9164-x

    Article  CAS  Google Scholar 

  • Goncalves-Vidigal MC, Cruz AS, Garcia A, Kami J, Vidigal PS, Sousa LL, McClean P, Gepts P, Pastor-Corrales MA (2011) Linkage mapping of the Phg-1 and Co-1 (4) genes for resistance to angular leaf spot and anthracnose in the common bean cultivar AND 277. Theor Appl Genet 122(5):893–903. doi:10.1007/s00122-010-1496-1

    Article  PubMed Central  PubMed  Google Scholar 

  • Goodstein DM, Shu S, Howson R, Neupane R, Hayes RD, Fazo J, Mitros T, Dirks W, Hellsten U, Putnam N, Rokhsar DS (2012) Phytozome: a comparative platform for green plant genomics. Nucleic Acids Res 40(D1):D1178–D1186. doi:10.1093/nar/gkr944

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gore MA, Chia J-M, Elshire RJ, Sun Q, Ersoz ES, Hurwitz BL, Peiffer JA, McMullen MD, Grills GS, Ross-Ibarra J, Ware DH, Buckler ES (2009) A first-generation haplotype map of maize. Science 326(5956):1115–1117. doi:10.1126/science.1177837

    Article  CAS  PubMed  Google Scholar 

  • Hammond-Kosack KE, Jones JDG (1997) Plant disease resistance genes. Ann Rev Plant Physiol Plant Mol Biol 48:575–607

    Article  CAS  Google Scholar 

  • Innes RW, Ameline-Torregrosa C, Ashfield T, Cannon E, Cannon SB, Chacko B, Chen NWG, Couloux A, Dalwani A, Denny R, Deshpande S, Egan AN, Glover N, Hans CS, Howell S, Ilut D, Jackson S, Lai H, Mammadov J, del Campo SM, Metcalf M, Nguyen A, O’Bleness M, Pfeil BE, Podicheti R, Ratnaparkhe MB, Samain S, Sanders I, Segurens B, Sevignac M, Sherman-Broyles S, Thareau V, Tucker DM, Walling J, Wawrzynski A, Yi J, Doyle JJ, Geffroy V, Roe BA, Maroof MAS, Young ND (2008) Differential accumulation of retroelements and diversification of NB-LRR disease resistance genes in duplicated regions following polyploidy in the ancestor of soybean. Plant Physiol 148(4):1740–1759. doi:10.1104/pp.108.127902

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jung GW, Coyne DP, Bokosi J, Steadman JR, Nienhuis J (1998) Mapping genes for specific and adult plant resistance to rust and abaxial leaf pubescence and their genetic relationships using randomly amplified polymorphic DNA (RAPD) markers in common bean. J Am Soc Hortic Sci 123(5):859–863

    CAS  Google Scholar 

  • Jupe F, Pritchard L, Etherington GJ, MacKenzie K, Cock PJA, Wright F, Sharma SK, Bolser D, Bryan GJ, Jones JDG, Hein I (2012) Identification and localisation of the NB-LRR gene family within the potato genome. BMC Genom 13:75. doi:10.1186/1471-2164-13-75

    Article  CAS  Google Scholar 

  • Kim YJ, Kim JE, Lee JH, Lee MH, Jung HW, Bahk YY, Hwang BK, Hwang I, Kim WT (2004) The Vr-PLC3 gene encodes a putative plasma membrane-localized phosphoinositide-specific phospholipase C whose expression is induced by abiotic stress in mung bean (Vigna radiata L.). FEBS Lett 556(1–3):127–136. doi:10.1016/s0014-5793(03)01388-7

    Article  CAS  PubMed  Google Scholar 

  • Kim M, Hyten DL, Bent AF, Diers BW (2010) Fine mapping of the SCN resistance locus rhg1-b from PI 88788. Plant Genom 3(2):81–89. doi:10.3835/plantgenome2010.02.0001

    Article  Google Scholar 

  • Kocourkova D, Krckova Z, Pejchar P, Veselkova S, Valentova O, Wimalasekera R, Scherer GFE, Martinec J (2011) The phosphatidylcholine-hydrolysing phospholipase C NPC4 plays a role in response of Arabidopsis roots to salt stress. J Exp Bot 62(11):3753–3763. doi:10.1093/jxb/err039

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kosambi DD (1944) The estimation of map distances from recombination values. Ann Eugen 12:172–175

    Article  Google Scholar 

  • Krattinger SG, Lagudah ES, Spielmeyer W, Singh RP, Huerta-Espino J, McFadden H, Bossolini E, Selter LL, Keller B (2009) A putative ABC transporter confers durable resistance to multiple fungal pathogens in wheat. Science 323(5919):1360–1363. doi:10.1126/science.1166453

    Article  CAS  PubMed  Google Scholar 

  • Lander ES, Green P, Abrahamson J, B A, Daly MJ, Lincoln SE, Newburg L (1987) Mapmaker: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1:174–181

    Article  CAS  PubMed  Google Scholar 

  • Larkindale J, Vierling E (2008) Core genome responses involved in acclimation to high temperature. Plant Physiol 146(2):748–761. doi:10.1104/pp.107.112060

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lisso J, Altmann T, Muessig C (2006) The AtNFXL1 gene encodes a NF-X1 type zinc finger protein required for growth under salt stress. FEBS Lett 580(20):4851–4856. doi:10.1016/j.febslet.2006.07.079

    Article  CAS  PubMed  Google Scholar 

  • Lukashin AV, Borodovsky M (1998) GeneMark.hmm: new solutions for gene finding. Nucleic Acids Res 26(4):1107–1115. doi:10.1093/nar/26.4.1107

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Martin GB, Brommonschenkel SH, Chunwongse J, Frary A, Ganal MW, Spivey R, Wu TY, Earle ED, Tanksley SD (1993) Map-based cloning of a protein kinase gene conferring disease resistance in tomato. Science 262(5138):1432–1436

    Article  CAS  PubMed  Google Scholar 

  • Mastenbroek C (1960) A breeding programs for resistance to anthracnose in dry shell haricot beans, based on a new gene. Euphytica 9:177–184

    Article  Google Scholar 

  • McClean PE, Mamidi S, McConnell M, Chikara S, Lee R (2010) Synteny mapping between common bean and soybean reveals extensive blocks of shared loci. BMC Genom 11:184. doi:10.1186/1471-2164-11-184

    Article  Google Scholar 

  • McDowell JM, Simon SA (2008) Molecular diversity at the plant-pathogen interface. Dev Comp Immunol 32(7):736–744. doi:10.1016/j.dci.2007.11.005

    Article  CAS  PubMed  Google Scholar 

  • McHale L, Tan XP, Koehl P, Michelmore RW (2006) Plant NBS-LRR proteins: adaptable guards. Genom Biol 7(4):11. doi:10.1186/gb-2006-7-4-212

    Article  Google Scholar 

  • McRostie GP (1919) Inheritance of anthracnose resistance as indicated by a cross between a resistant and a susceptible bean. Phytopathology 9:141–148

    Google Scholar 

  • Melotto M, Kelly JD (2000) An allelic series at the Co-1 locus conditioning resistance to anthracnose in common bean of Andean origin. Euphytica 116(2):143–149. doi:10.1023/a:1004005001049

    Article  Google Scholar 

  • Mendez-Vigo B, Rodriguez-Suarez C, Paneda A, Ferreira JJ, Giraldez R (2005) Molecular markers and allelic relationships of anthracnose resistance gene cluster B4 in common bean. Euphytica 141(3):237–245

    Article  CAS  Google Scholar 

  • Meyers BC, Dickerman AW, Michelmore RW, Sivaramakrishnan S, Sobral BW, Young ND (1999) Plant disease resistance genes encode members of an ancient and diverse protein family within the nucleotide-binding superfamily. Plant J 20(3):317–332. doi:10.1046/j.1365-313X.1999.00606.x

    Article  CAS  PubMed  Google Scholar 

  • Meyers BC, Kozik A, Griego A, Kuang HH, Michelmore RW (2003) Genome-wide analysis of NBS-LRR-encoding genes in Arabidopsis. Plant Cell 15(4):809–834

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Michelmore RW, Christopoulou M, Caldwell KS (2013) Impacts of resistance gene genetics, function, and evolution on a durable future. In: VanAlfen NK (ed) Annual review of phytopathology, vol 51. Annual Reviews, Palo Alto, pp 291–319. doi:10.1146/annurev-phyto-082712-102334

    Google Scholar 

  • Miklas PN, Kelly JD, Beebe SE, Blair MW (2006) Common bean breeding for resistance against biotic and abiotic stresses: from classical to MAS breeding. Euphytica 147(1–2):105–131

    Article  CAS  Google Scholar 

  • Mucyn TS, Clemente A, Andriotis VME, Balmuth AL, Oldroyd GED, Staskawicz BJ, Rathjen JP (2006) The tomato NBARC-LRR protein Prf interacts with Pto kinase in vivo to regulate specific plant immunity. Plant Cell 18(10):2792–2806. doi:10.1105/tpc.106.044016

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mucyn TS, Wu AJ, Balmuth AL, Arasteh JM, Rathjen JP (2009) Regulation of tomato Prf by Pto-like protein kinases. Mol Plant-Microbe Interact 22(4):391–401. doi:10.1094/mpmi-22-4-0391

    Article  CAS  PubMed  Google Scholar 

  • Mudge J, Cannon SB, Kalo P, Oldroyd GE, Roe BA, Town CD, Young ND (2005) Highly syntenic regions in the genomes of soybean, Medicago truncatula, and Arabidopsis thaliana. BMC Plant Biol 5:15. doi:10.1186/1471-2229-5-15

    Article  PubMed Central  PubMed  Google Scholar 

  • Oh CS, Martin GB (2011) Effector-triggered immunity mediated by the Pto kinase. Trends Plant Sci 16(3):132–140. doi:10.1016/j.tplants.2010.11.001

    Article  CAS  PubMed  Google Scholar 

  • Pan QL, Liu YS, Budai Hadrian O, Sela M, Carmel Goren L, Zamir D, Fluhr R (2000) Comparative genetics of nucleotide binding site-leucine rich repeat resistance gene homologues in the genomes of two dicotyledons: tomato and Arabidopsis. Genetics 155(1):309–322

    CAS  PubMed Central  PubMed  Google Scholar 

  • Park SO, Coyne DP, Bokosi JM, Steadman JR (1999) Molecular markers linked to genes for specific rust resistance and indeterminate growth habit in common bean. Euphytica 105(2):133–141. doi:10.1023/a:1003477714349

    Article  CAS  Google Scholar 

  • Pastor-Corrales MA, Tu JC (1989) Anthracnose. In: Schwartz HF, Pastor-Corrales MA (eds) Bean production problems in the tropics, 2nd edn. Centro Internacional de Agricultura Tropical (CIAT), Colombia, pp 77–104

    Google Scholar 

  • Pastor-Corrales MA, Erazo OA, Estrada EI, Singh SP (1994) Inheritance of anthracnose resistance in common bean accessions G2333. Plant Dis 78:959–962

    Article  Google Scholar 

  • Pedley KF, Martin GB (2003) Molecular basis of Pto-mediated resistance to bacterial speck disease in tomato. Annu Rev Phytopathol 41:215–243

    Article  CAS  PubMed  Google Scholar 

  • Pflieger S, Richard MMS, Blanchet S, Meziadi C, Geffroy V (2013) VIGS technology: an attractive tool for functional genomics studies in legumes. Funct Plant Biol 40 (12):1234–1248. doi:http://dx.doi.org/10.1071/FP13089

  • Ramirez M, Graham MA, Blanco-Lopez L, Silvente S, Medrano-Soto A, Blair MW, Hernandez G, Vance CP, Lara M (2005) Sequencing and analysis of common bean ESTs. Building a foundation for functional genomics. Plant Physiol 137(4):1211–1227

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rozen S, Skaletsky H (2000) Primer3 on the WWW for general users and for biologist programmers. Methods Mol Biol (Clifton, NJ) 132:365–386

    CAS  Google Scholar 

  • Ruben E, Jamai A, Afzal J, Njiti VN, Triwitayakorn K, Iqbal MJ, Yaegashi S, Bashir R, Kazi S, Arelli P, Town CD, Ishihara H, Meksem K, Lightfoot DA (2006) Genomic analysis of the rhg1 locus: candidate genes that underlie soybean resistance to the cyst nematode. Mol Genet Genom 276(6):503–516. doi:10.1007/s00438-006-0150-8

    Article  CAS  Google Scholar 

  • Rutherford K, Parkhill J, Crook J, Horsnell T, Rice P, Rajandream MA, Barrell B (2000) Artemis: sequence visualization and annotation. Bioinformatics 16(10):944–945

    Article  CAS  PubMed  Google Scholar 

  • Schlueter JA, Goicoechea JL, Collura K, Gill N, Lin J-Y, Yu Y, Kudrna D, Zuccolo A, Vallejos CE, Munoz-Torres M, Blair MW, Tohme J, Tomkins J, McClean P, Wing RA, Jackson SA (2008) BAC-end sequence analysis and a draft physical map of the common bean (Phaseolus vulgaris L.) genome. Trop Plant Biol 1:40–48

    Article  CAS  Google Scholar 

  • Schmutz J, Cannon SB, Schlueter J, Ma JX, Mitros T, Nelson W, Hyten DL, Song QJ, Thelen JJ, Cheng JL, Xu D, Hellsten U, May GD, Yu Y, Sakurai T, Umezawa T, Bhattacharyya MK, Sandhu D, Valliyodan B, Lindquist E, Peto M, Grant D, Shu SQ, Goodstein D, Barry K, Futrell-Griggs M, Abernathy B, Du JC, Tian ZX, Zhu LC, Gill N, Joshi T, Libault M, Sethuraman A, Zhang XC, Shinozaki K, Nguyen HT, Wing RA, Cregan P, Specht J, Grimwood J, Rokhsar D, Stacey G, Shoemaker RC, Jackson SA (2010) Genome sequence of the palaeopolyploid soybean. Nature 463(7278):178–183. doi:10.1038/nature08670

    Article  CAS  PubMed  Google Scholar 

  • Schmutz J, McClean P, Mamidi S, Wu AJ, Cannon SB, Grimwood J, Jenkins J, Shu SQ, Song QJ, Chavarro C, Torres-Torres M, Geffroy V, Moghaddam SM, Gao D, Abernathy B, Barry K, Blair M, Brick MA, Chovatia M, Gepts P, Goodstein DM, Gonzales M, Hellsten U, Hyten DL, Jia GF, Kelly JD, Kudrna D, Lee R, Richard MMS, Miklas PN, Osorno JM, Rodrigues J, Thareau V, Urrea CA, Wang M, Yu Y, Wing RA, Cregan PB, Rokhsar D, Jackson SA (2014) A reference genome for common bean and genome-wide analysis of dual domestications. Nat Genet (in press)

  • Soderlund C, Bomhoff M, Nelson WM (2011) SyMAP v3.4: a turnkey synteny system with application to plant genomes. Nucleic Acids Res 39(10):e68. doi:10.1093/nar/gkr123

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28(10):2731–2739. doi:10.1093/molbev/msr121

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tasma IM, Brendel V, Whitham SA, Bhattacharyya MK (2008) Expression and evolution of the phosphoinositide-specific phospholipase C gene family in Arabidopsis thaliana. Plant Physiol Biochem 46(7):627–637. doi:10.1016/j.plaphy.2008.04.015

    Article  CAS  PubMed  Google Scholar 

  • Thareau V, Dehais P, Serizet C, Hilson P, Rouze P, Aubourg S (2003) Automatic design of gene-specific sequence tags for genome-wide functional studies. Bioinformatics 19(17):2191–2198. doi:10.1093/bioinformatics/btg286

    Article  CAS  PubMed  Google Scholar 

  • Vallejo V, Kelly JD (2009) New insights into the anthracnose resistance of common bean landrace G 2333. Open Hortic J 2(1):29–33. doi:10.2174/1874840600902010029

    Article  CAS  Google Scholar 

  • Vallejos CE, Astua-Monge G, Jones V, Plyler TR, Sakiyama NS, Mackenzie SA (2006) Genetic and molecular characterization of the I locus of Phaseolus vulgaris. Genetics 172(2):1229–1242. doi:10.1534/genetics.105.050S15

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Vossen JH, Abd-El-Haliem A, Fradin EF, van den Berg GCM, Ekengren SK, Meijer HJG, Seifi A, Bai YL, ten Have A, Munnik T, Thomma B, Joosten M (2010) Identification of tomato phosphatidylinositol-specific phospholipase-C (PI-PLC) family members and the role of PLC4 and PLC6 in HR and disease resistance. Plant J 62(2):224–239. doi:10.1111/j.1365-313X.2010.04136.x

    Article  CAS  PubMed  Google Scholar 

  • Xiao SY, Ellwood S, Calis O, Patrick E, Li TX, Coleman M, Turner JG (2001) Broad-spectrum mildew resistance in Arabidopsis thaliana mediated by RPW8. Science 291(5501):118–120. doi:10.1126/science.291.5501.118

    Article  CAS  PubMed  Google Scholar 

  • Young RA, Kelly JD (1996) Characterization of the genetic resistance to Colletotrichum lindemuthianum in common bean differential cultivars. Plant Dis 80(6):650–654

    Article  Google Scholar 

  • Zhang CQ, Bradshaw JD, Whitham SA, Hill JH (2010) The development of an efficient multipurpose bean pod mottle virus viral vector set for foreign gene expression and RNA silencing. Plant Physiol 153(1):52–65. doi:10.1104/pp.109.151639

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

The research was supported by INRA, CNRS, IFR87 and IDEEV.

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standards

All experiments described in this manuscript comply with the current laws of the country in which they were performed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valérie Geffroy.

Additional information

Communicated by David A. Lightfoot.

Electronic supplementary material

Below is the link to the electronic supplementary material.

122_2014_2328_MOESM1_ESM.pdf

Fig. S1 Fine mapping of Co-x and annotation of target region. a Physical map of Co-x region and graphical genotypes of RILs in which recombination occured between markers M5 and CV542014. Light grey and dark grey bars represent genomic regions derived from BAT93 and JaloEEP558, respectively. Phenotypes of resistance (R) and suceptibility (S) of RILs to C. lindemuthianum strain 100 are indicated below. For each RIL, a black arrow indicates the genetic interval carrying the inferred recombination breakpoint, represented by light/dark grey hatched motif. Location and name of markers are indicated on the left, in black when they are polymorphic and in grey when they are not polymorphic. b Annotation of the Co-x 58-kb target region between markers P05 and K06 in G19833. Predicted candidate genes for Co-x resistance are indicated by black or hatched arrows, for full-length and truncated genes, respectively. Loci names according to www.phytozome.net and putative gene function are indicated on the right. Location and name of markers are indicated on the right, in black when they are polymorphic and in grey when they are not polymorphic. (PDF 183 kb)

122_2014_2328_MOESM2_ESM.pdf

Fig. S2 Multiple sequence alignment of P. vulgaris PI-PLC gene products. The conserved PI-PLC-X, PI-PLC-Y and C2 domains are indicated below the alignment. (PDF 100 kb)

122_2014_2328_MOESM3_ESM.pptx

Fig. S3 Semi-quantitative RT-PCR analysis of the expression pattern of Co-x candidate genes during infection kinetics on JaloEEP558, at 24, 48, 72 and 96 h post infection (hpi), with an avirulent strain (strain 100) and a virulent strain (strain C531) of Colletotrichum lindemuthianum. Ubiquitine was used as an internal control to standardize cDNA input. (PPTX 1807 kb)

Supplementary material 4 (DOCX 16 kb)

Supplementary material 5 (DOCX 30 kb)

Supplementary material 6 (DOCX 15 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Richard, M.M.S., Pflieger, S., Sévignac, M. et al. Fine mapping of Co-x, an anthracnose resistance gene to a highly virulent strain of Colletotrichum lindemuthianum in common bean. Theor Appl Genet 127, 1653–1666 (2014). https://doi.org/10.1007/s00122-014-2328-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-014-2328-5

Keywords

Navigation