Skip to main content
Log in

QTL for resistance to root lesion nematode (Pratylenchus thornei) from a synthetic hexaploid wheat source

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

A whole genome average interval mapping approach identified eight QTL associated with P. thornei resistance in a DH population from a cross between the synthetic-derived wheat Sokoll and cultivar Krichauff.

Abstract

Pratylenchus thornei are migratory nematodes that feed and reproduce within the wheat root cortex, causing cell death (lesions) resulting in severe yield reductions globally. Genotypic selection using molecular markers closely linked to Pratylenchus resistance genes will accelerate the development of new resistant cultivars by reducing the need for laborious and expensive resistance phenotyping. A doubled haploid wheat population (150 lines) from a cross between the synthetic-derived cultivar Sokoll (P. thornei resistant) and cultivar Krichauff (P. thornei moderately susceptible) was used to identify quantitative trait loci (QTL) associated with P. thornei resistance. The resistance identified in the glasshouse was validated in a field trial. A genetic map was constructed using Diversity Array Technology and the QTL regions identified were further targeted with simple sequence repeat (SSR) and single-nucleotide polymorphism (SNP) markers. Six significant and two suggestive P. thornei resistance QTL were detected using a whole genome average interval mapping approach. Three QTL were identified on chromosome 2B, two on chromosome 6D, and a single QTL on each of chromosomes 2A, 2D and 5D. The QTL on chromosomes 2BS and 6DS mapped to locations previously identified to be associated with Pratylenchus resistance. Together, the QTL on 2B (QRlnt.sk-2B.12B.3) and 6D (QRlnt.sk-6D.1 and 6D.2) explained 30 and 48 % of the genotypic variation, respectively. Flanking PCR-based markers based on SSRs and SNPs were developed for the major QTL on 2B and 6D and provide a cost-effective high-throughput tool for marker-assisted breeding of wheat with improved P. thornei resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Akbari M, Wenzl P, Caig V, Carling J, Xia L, Yang SY, Uszynski G, Mohler V, Lehmensiek A, Kuchel H, Hayden MJ, Howes N, Sharp P, Vaughan P, Rathmell B, Huttner E, Kilian A (2006) Diversity arrays technology (DArT) for high-throughput profiling of the hexaploid wheat genome. Theor Appl Genet 113:1409–1420

    Article  CAS  PubMed  Google Scholar 

  • Appels R (2003) A consensus map of wheat—a cooperative international effort. In: 10th International wheat genetics symposium, Istituto Sperimentale per la Cerealicoltura, Roma, pp 211–214

  • Armstrong JS, Peairs FB, Pilcher SD, Russell CC (1993) The effect of planting time, insecticides, and liquid fertilizer on the Russian wheat aphid (Homoptera: Aphididae) and the lesion nematode (Pratylenchus thornei) on winter wheat. J Kans Entomol Soc 66:69–73

    Google Scholar 

  • Breiman A, Graur D (1995) Wheat Evolution. Isr J Plant Sci 43:85–98

    Article  Google Scholar 

  • Butler DG, Cullis BR, Gilmour AR, Gogel BJ (2009) ASReml-R reference manual

  • Cane K, Eagles HA, Laurie DA, Trevaskis B, Vallance N, Eastwood RF, Gororo NN, Kuchel H, Martin PJ (2013) Ppd-B1 and Ppd-D1 and their effects in southern Australian wheat. Crop Pasture Sci 64:100–114

    Article  CAS  Google Scholar 

  • Castillo P, Mora-Rodriguez MP, Navas-Cortes JA, Jimenez-Diaz RM (1998) Interactions of Pratylenchus thornei and Fusarium oxysporum f. sp. ciceris on chickpea. Phytopathology 88:828–836

    Article  CAS  PubMed  Google Scholar 

  • Daniel R, Thompson J, McKay A, Simpfendorfer S (2013) The additive yield impact of root lesion nematode and crown rot. Grains Research & Development Corporation 2013 farm business updates. South Australian Research & Devolpment Institute, Australia

    Google Scholar 

  • Ellis MH, Spielmeyer W, Gale KR, Rebetzke GJ, Richards RA (2002) “Perfect” markers for the Rht-B1b and Rht-D1b dwarfing genes in wheat. Theor Appl Genet 105:1038–1042

    Article  CAS  PubMed  Google Scholar 

  • Fu DL, Szucs P, Yan LL, Helguera M, Skinner JS, von Zitzewitz J, Hayes PM, Dubcovsky J (2005) Large deletions within the first intron in VRN-1 are associated with spring growth habit in barley and wheat. Mol Genet Genomics 273:54–65

    Article  CAS  PubMed  Google Scholar 

  • Gill BS, Raupp WJ (1987) Direct genetic transfers from Aegilops squarrosa L. to hexaploid wheat. Crop Sci 27:445–450

    Article  Google Scholar 

  • Haling RE, Simpson RJ, McKay AC, Hartley D, Lambers H, Ophel-Keller K, Wiebkin S, Herdina, Riley IT, Richardson AE (2011) Direct measurement of roots in soil for single and mixed species using a quantitative DNA-based method. Plant Soil 348:123–137

    Article  CAS  Google Scholar 

  • Hollaway GJ, Ophel-Keller KM, Taylor SP, Burns RA, McKay AC (2003) Effect of soil water content, sampling method and sample storage on the quantification of root lesion nematodes (Pratylenchus spp.) by different methods. Aust Plant Pathol 32:73–79

    Article  Google Scholar 

  • Howes NK, Sidhu PK, Sharma JK, Davies PA (2003) Wheat doubled haploids: Wheat × maize technique. SARDI Res Rep Ser

  • Hyten DL, Smith JR, Frederick RD, Tucker ML, Song Q, Cregan PB (2009) Bulked segregant analysis using the GoldenGate assay to locate the Rpp3 locus that confers resistance to soybean rust in soybean. Crop Sci 49:265–271

    Article  CAS  Google Scholar 

  • Jaccoud D, Peng K, Feinstein D, Kilian A (2001) Diversity arrays: a solid state technology for sequence information independent genotyping. Nucleic Acids Res 29(4):E25

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jayatilake DV, Tucker EJ, Bariana H, Kuchel H, Edwards J, McKay AC, Chalmers K, Mather DE (2013) Genetic mapping and marker development for resistance of wheat against the root lesion nematode Pratylenchus neglectus. BMC Plant Biol 13:230

    Article  PubMed Central  PubMed  Google Scholar 

  • Kosambi DD (1944) The estimation of map distances from recombination values. Ann Eugen 12:172–175

    Article  Google Scholar 

  • Lagudah ES, Appels R, McNeil D, Schachtman DP (1993) Exploiting the diploid ‘D’ genome chromatin for wheat improvement. In: Gustafson JP, Appels R, Raven R (eds) Gene conversion and exploitation. Plenum Press, New York

    Google Scholar 

  • Linsell KJ, Riley IT, Davies KA, Oldach KH (2014) Characterization of resistance to Pratylenchus thornei (Nematoda) in wheat (Triticum aestivum); attraction, penetration, motility and reproduction. Phytopathology 104:174–187

    Article  PubMed  Google Scholar 

  • Manly KF, Olson JM (1999) Overview of QTL mapping software and introduction to map manager QT. Mamm Genome 10:327–334

    Article  CAS  PubMed  Google Scholar 

  • Michelmore RW, Paran I, Kesseli RV (1991) Identification of markers linked to disease-resistance genes by bulked segregant analysis—a rapid method to detect markers in specific genomic regions by using segregating populations. Proc Natl Acad Sci USA 88:9828–9832

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Min YY, Toyota K, Sato E (2012) A novel nematode diagnostic method using the direct quantification of major plant-parasitic nematodes in soil by real-time PCR. Nematology 14:265–276

    Article  CAS  Google Scholar 

  • Mujeeb-Kazi A (1995) Interspecific crosses—hybrid production and utilisation. In: Mujeeb-Kazi A, Hettel GP (eds) Utilizing wild grass biodiversity in wheat improvement: 15 years of wide cross research. CIMMYT, Mexico

    Google Scholar 

  • Nesbitt M (2001) Wheat evolution: Integrating archaeological and biological evidence. In: London TLSo (ed) Wheat taxonomy: the legacy of John Percival, the linnean special issue 3. Academic Press, London, pp 37–59

    Google Scholar 

  • Nicol JM, Ortiz-Monasterio I (2004) Effects of the root-lesion nematode, Pratylenchus thornei, on wheat yields in Mexico. Nematology 6:485–493

    Article  Google Scholar 

  • Nicol JM, Vanstone VA (1993) Carrot piece and chickpea callus culture for P. thornei and P. neglectus. In: 9th Biennial Australian plant pathology conference. Pratylenchus workshop, Hobart

  • Ogbonnaya FC (2008) Mining synthetic hexaploids for multiple disease resistance to improve bread wheat. Aust J Agric Res 59:421

    Article  Google Scholar 

  • Ophel-Keller K, McKay A, Hartley D, Herdina, Curran J (2008) Development of a routine DNA-based testing service for soilborne diseases in Australia. Australas Plant Pathol 37:243–253

    Article  CAS  Google Scholar 

  • R Development Core Team (2013) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0. http://www.R-project.org

  • Riley IT, Wiebkin S, Hartley D, McKay AC (2010) Quantification of roots and seeds in soil with real-time PCR. Plant Soil 331:151–163

    Article  CAS  Google Scholar 

  • Rohde RA (1972) Expression of resistance in plants to nematodes. Annu Rev Phytopathol 10:233–252

    Article  Google Scholar 

  • Schmidt AL, McIntyre CL, Thompson J, Seymour NP, Liu CJ (2005) Quantitative trait loci for root lesion nematode (Pratylenchus thornei) resistance in Middle-Eastern landraces and their potential for introgression into Australian bread wheat. Aust J Agric Res 56:1059–1068

    Article  CAS  Google Scholar 

  • Semagn K, Bjornstad A, Skinnes H, Maroy AG, Tarkegne Y, William M (2006) Distribution of DArT, AFLP, and SSR markers in a genetic linkage map of a doubled-haploid hexaploid wheat population. Genome 49:545–555

    Article  CAS  PubMed  Google Scholar 

  • Sheedy JG, Thompson JP (2009) Resistance to the root-lesion nematode Pratylenchus thornei of Iranian landrace wheat. Aust Plant Pathol 38:478–489

    Article  Google Scholar 

  • Smiley RW, Whittaker RG, Gourlie JA, Easley SA (2005) Pratylenchus thornei associated with reduced wheat yield in Oregon. J Nematol 37:45–54

    PubMed Central  PubMed  Google Scholar 

  • Smith A, Cullis B, Thompson R (2001) Analyzing variety by environment data using multiplicative mixed models and adjustments for spatial field trend. Biometrics 57:1138–1147

    Article  CAS  PubMed  Google Scholar 

  • Smith AB, Cullis BR, Thompson R (2005) The analysis of crop cultivar breeding and evaluation trials: an overview of current mixed model approaches. J Agric Sci 143:449–462

    Article  Google Scholar 

  • Somers DJ, Isaac P, Edwards K (2004) A high-density microsatellite consensus map for bread wheat (Triticum aestivum L.). Theor Appl Genet 109:1105–1114

    Article  CAS  PubMed  Google Scholar 

  • Southey JF (1986) Laboratory methods for work with plant and soil nematodes. Her Majesty’s Stationery Office, London

    Google Scholar 

  • Taylor SP, Evans ML (1998) Vertical and horizontal distribution of and soil sampling for root lesion nematodes (Pratylenchus neglectus and P. thornei) in South Australia. Aust Plant Pathol 27:90–96

    Article  Google Scholar 

  • Taylor JD, Verbyla AP (2011) R package wgaim: QTL analysis in bi-parental populations using linear mixed models. J Stat Softw 40

  • Taylor SP, McKay A, Ophel-Keller K, Herdina (2002) Comparison of quantitative PCR and mister extraction for the assessment of Pratylenchus neglectus or P. thornei. In: Cook R, Hunt D (eds) Fourth International Congress of Nematology, Brill, Tenerife

  • Thompson JP, Clewett TG (1986) Research on root lesion nematode: occurance and wheat varietal reaction. Queensland Wheat Research Institute biennial report for 1982–84. Queensland Department of Primary Industries, Toowoomba, pp 32–34

    Google Scholar 

  • Thompson JP, Haak MI (1997) Resistance to root-lesion nematode (Pratylenchus thornei) in Aegilops tauschii Coss, the D-genome donor to wheat. Aust J Agric Res 48:553–559

    Article  Google Scholar 

  • Thompson JP, Brennan PS, Clewett TG, Sheedy JG, Seymour NP (1999) Progress in breeding wheat for tolerance and resistance to root-lesion nematode (Pratylenchus thornei). Aust Plant Pathol 28:45–52

    Article  Google Scholar 

  • Thompson JP, Owen KJ, Stirling GR, Bell MJ (2008) Root-lesion nematodes (Pratylenchus thornei and P. neglectus): a review of recent progress in managing a significant pest of grain crops in northern Australia. Aust Plant Pathol 37:235–242

    Article  Google Scholar 

  • Thompson JP, O’Reilly MM, Clewett TG (2009) Resistance to the root-lesion nematode Pratylenchus thornei in wheat landraces and cultivars from the West Asia and North Africa (WANA) region. Crop Pasture Sci 60:1209–1217

    Article  Google Scholar 

  • Toktay H, McIntyre CL, Nicol JM, Ozkan H, Elekcioglu HI (2006) Identification of common root-lesion nematode (Pratylenchus thornei Sher et Allen) loci in bread wheat. Genome 49:1319–1323

    Article  CAS  PubMed  Google Scholar 

  • Trick M, Adamski N, Mugford SG, Jiang C, Febrer M, Uauy C (2012) Combining SNP discovery from next-generation sequencing data with bulked segregant analysis (BSA) to fine-map genes in polyploid wheat. BMC Plant Biol 12:14

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Van Os H, Stam P, Visser RGF, Van Eck HJ (2005) RECORD: a novel method for ordering loci on a genetic linkage map. Theor Appl Genet 112:30–40

    Article  CAS  PubMed  Google Scholar 

  • Vanstone VA, Rathjen AJ, Ware AH, Wheeler RD (1998) Relationship between root lesion nematodes (Pratylenchus neglectus and P. thornei) and performance of wheat varieties. Aust J Exp Agric 38:181–188

    Article  Google Scholar 

  • Verbyla AP, Cullis BR, Thompson R (2007) The analysis of QTL by simultaneous use of the full linkage map. Theor Appl Genet 116:95–111

    Article  PubMed  Google Scholar 

  • Verbyla AP, Taylor JD, Verbyla KL (2012) RWGAIM: an efficient high-dimensional random whole genome average (QTL) interval mapping approach. Genet Res 94:291–306

    Google Scholar 

  • Wang S, Wong D, Forrest KL, Allen A, Chao S, Maccaferri M, Salvi S, Luo M, Feuillet C, Salse J, Morgante M, Pozniak C, Akhunova A, Dubcovsky J, Ganal M, Tuberosa R, Lawley C, Micoulich I, Cavanagh C, Edwards K, Hayden MJ, Akhunov E (2013) Polyploid wheat genomic diversity revealed by the high-density 90,000 SNP array. Plant Biotechnol J (submitted)

  • Williams KJ, Taylor SP, Bogacki P, Pallotta M, Bariana HS, Wallwork H (2002) Mapping of the root lesion nematode (Pratylenchus neglectus) resistance gene Rlnn1 in wheat. Theor Appl Genet 104:874–879

    Google Scholar 

  • Yan G, Smiley RW, Okubara PA (2012) Detection and quantification of Pratylenchus thornei in DNA extracted from soil using real-time PCR. Phytopathology 102:14–22

    Article  CAS  PubMed  Google Scholar 

  • Zwart RS, Thompson JP, Godwin ID (2004) Genetic analysis of resistance to root-lesion nematode (Pratylenchus thornei) in wheat. Plant Breed 123:209–212

    Article  Google Scholar 

  • Zwart RS, Thompson JP, Godwin ID (2005) Identification of quantitative trait loci for resistance to two species of root-lesion nematode (Pratylenchus thornei and P. neglectus) in wheat. Aust J Agric Res 56:345–352

    Article  CAS  Google Scholar 

  • Zwart RS, Thompson JP, Sheedy JG, Nelson JC (2006) Mapping quantitative trait loci for resistance to Pratylenchus thornei from synthetic hexaploid wheat in the International Triticeae Mapping Initiative (ITMI) population. Aust J Agric Res 57:525–530

    Article  Google Scholar 

  • Zwart RS, Thompson JP, Milgate AW, Bansal UK, Williamson PM, Raman H, Bariana HS (2010) QTL mapping of multiple foliar disease and root-lesion nematode resistances in wheat. Mol Breeding 26:107–124

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the Grains Research and Development Corporation (GRDC) through a Grains Industry Research Scholarship to K.J. Linsell and for funding the original screening of the mapping population and field evaluations. The project was also supported by the South Australian Research and Development Institute (SARDI) and Molecular Plant Breeding Cooperative Research Centre (MPBCRC). The authors would like to thank K. Willsmore for MapManger QTX training, to the SARDI Nematology Group, especially D. Pounsett for assistance with culturing of the nematodes, to A. McKay (SARDI) and A. Cook (Minnipa Agricultural Centre) for coordinating the field trials, and to I. Riley at SARDI and K. Davies at the University of Adelaide for manuscript editing. Further thanks are to H. Eagles, University of Adelaide, for the information on pedigrees and COP value.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klaus H. Oldach.

Additional information

Communicated by M. Xu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Fig. 1

Whole genome average interval mapping iterations for the Sokoll x Krichauff doubled haploid wheat population. Supplementary material 1 (DOCX 232 kb)

Supplementary Table 1

SNP sequences on iSelect 90 K SNP wheat bead chip linked to Pratylenchus thornei resistance QTL on chromosome 2B and 6D in the Sokoll x Krichauff wheat. Supplementary material 2 (DOCX 15 kb)

Supplementary Table 2

STS markers derived from DArT sequences and mapped in the Sokoll x Krichauff population to chromosomes 2B and 6D. Supplementary material 3 (DOCX 12 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Linsell, K.J., Rahman, M.S., Taylor, J.D. et al. QTL for resistance to root lesion nematode (Pratylenchus thornei) from a synthetic hexaploid wheat source. Theor Appl Genet 127, 1409–1421 (2014). https://doi.org/10.1007/s00122-014-2308-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-014-2308-9

Keywords

Navigation