Skip to main content
Log in

Out of America: tracing the genetic footprints of the global diffusion of maize

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Maize was first domesticated in a restricted valley in south-central Mexico. It was diffused throughout the Americas over thousands of years, and following the discovery of the New World by Columbus, was introduced into Europe. Trade and colonization introduced it further into all parts of the world to which it could adapt. Repeated introductions, local selection and adaptation, a highly diverse gene pool and outcrossing nature, and global trade in maize led to difficulty understanding exactly where the diversity of many of the local maize landraces originated. This is particularly true in Africa and Asia, where historical accounts are scarce or contradictory. Knowledge of post-domestication movements of maize around the world would assist in germplasm conservation and plant breeding efforts. To this end, we used SSR markers to genotype multiple individuals from hundreds of representative landraces from around the world. Applying a multidisciplinary approach combining genetic, linguistic, and historical data, we reconstructed possible patterns of maize diffusion throughout the world from American “contribution” centers, which we propose reflect the origins of maize worldwide. These results shed new light on introductions of maize into Africa and Asia. By providing a first globally comprehensive genetic characterization of landraces using markers appropriate to this evolutionary time frame, we explore the post-domestication evolutionary history of maize and highlight original diversity sources that may be tapped for plant improvement in different regions of the world.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Anghiera P (1907) De Orbe Novo (1st complete ed. 1530). Leroux, Paris

  • Bryant D, Moulton V (2004) Neighbor-Net: an agglomerative method for the construction of phylogenetic networks. Mol Biol Evol 21:255–265

    Article  PubMed  CAS  Google Scholar 

  • Campbell MC, Tishkoff SA (2008) African genetic diversity: implications for human demographic history, modern human origins, and complex disease mapping. Annu Rev Genomics Hum Genet 9:403–433

    Article  PubMed  CAS  Google Scholar 

  • Camus-Kulandaivelu L, Veyrieras JB, Madur D, Combes V, Fourmann M, Barraud S, Dubreuil P, Gouesnard B, Manicacci D, Charcosset A (2006) Maize adaptation to temperate climate: relationship between population structure and polymorphism in the Dwarf8 gene. Genetics 172:2449–2463

    Article  PubMed  CAS  Google Scholar 

  • Chacornac-Rault M (2004) Thesis, Museum National d’Histoire Naturelle

  • Chastanet M (1998) Chapter 9. In: Chastanet M (ed) Plantes et Paysages d’Afrique. Karthala et Cra, Paris, pp 251–282

    Google Scholar 

  • Desjardins A, McCarthy E, Milho SA (2004) Makka and yu mai: early journeys of Zea mays to Asia National Agricultural Library www.nal.usda.gov/research/maize. Accessed 18 May, 2012

  • Dubreuil P, Warburton M, Chastanet M, Hoisington D, Charcosset A (2006) More on the introduction of temperate maize into Europe: large-scale bulk SSR genotyping and new historical elements. Maydica 51:281–291

    Google Scholar 

  • Ducrocq S, Madur D, Veyrieras JB, Camus-Kulandaivelu L, Kloiber-Maitz M, Presterl T, Ouzunova M, Manicacci D, Charcosset A (2008) Key impact of Vgt1 on flowering time adaptation in maize: evidence from association mapping and ecogeographical information. Genetics 178:2433–2437

    Article  PubMed  Google Scholar 

  • Duvick DN (2005) Genetic progress in yield of United States maize (Zea mays L.). Maydica 50:193–202

    Google Scholar 

  • Ellegren H (2000) Microsatellite mutations in the germline: implications for evolutionary inference. Trends Genet 16:551–558

    Article  PubMed  CAS  Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  Google Scholar 

  • Felsenstein J (2005) PHYLIP (Phylogeny inference package). http://evolution.genetics.washington.edu/phylip.html. Accessed 18 May, 2012

  • Gautier M, Laloë D, Moazami-Goudarzi K (2010) Insights into the genetic history of French cattle from dense SNP data on 47 worldwide breeds. PLoS One 5:9

    Google Scholar 

  • Goodman MM (1999) Broadening the genetic diversity in maize breeding by use of exotic germplasm. In: Coors JC, Pandey S (eds) The Genetics and Exploitation of Heterosis in Crops. WI ASSA-CSSA-SSSA, Madison, pp 139–148

    Google Scholar 

  • Gouesnard B, Rebourg C, Welcker C, Charcosset A (2002) Analysis of photoperiod sensitivity within a collection of tropical maize populations. Gen Res Crop Evol 49:471–481

    Article  Google Scholar 

  • Hamblin MT, Warburton ML, Buckler ES (2007) Empirical comparison of simple sequence repeats and single nucleotide polymorphisms in assessment of maize diversity and relatedness. PLoS One 2:367. doi:10.1371/journal.pone.0001367

    Article  Google Scholar 

  • Harrisse H (2006) Discovery of North America: a critical, documentary and historic investigation. Martino Publishing, Eastford

    Google Scholar 

  • Heers J (1991) La découverte de l’Amérique. Editions Complexe, Brussels

    Google Scholar 

  • Huson DH, Bryant D (2006) Application of phylogenetic networks in evolutionary studies. Mol Biol Evol 23:254–267

    Article  PubMed  CAS  Google Scholar 

  • Janick J, Caneva G (2005) The first images of maize in Europe. Maydica 50:71–80

    Google Scholar 

  • Jombart T (2008) Adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics 24:1403–1405

    Article  PubMed  CAS  Google Scholar 

  • Jombart T, Devillard S, Dufour AB, Pontier D (2008) Revealing cryptic spatial patterns in genetic variability by a new multivariate method. Heredity 101:92–103

    Article  PubMed  CAS  Google Scholar 

  • Jombart T, Pontier D, Dufour DA (2009) Genetic markers in the playground of multivariate analysis. Heredity 102:330–341

    Article  PubMed  CAS  Google Scholar 

  • Jombart T, Devillard S, Balloux F (2010) Discriminant analysis of principal components: a new method for the analysis of genetically structured populations. BMC Genet 11:94

    Article  PubMed  Google Scholar 

  • Juhé-Beaulaton D (1998) Chapter 2 In: Chastanet M (ed) Plantes et Paysages d’Afrique. Karthala et Cra, Paris, pp 45–67

  • Lach DF, Van Kley EJ (1994) Asia in the making of Europe. University of Chicago Press, Chicago

    Google Scholar 

  • Leff B, Ramankutty N, Foley JA (2004) Geographical distribution of the major crops across the world. Global Biogeochemical Cycles 18:GB1009. doi:10.1029/2003GB002108

    Article  Google Scholar 

  • Liu K, Goodman M, Muse S, Smith JS, Buckler E, Doebley J (2003) Genetic structure and diversity among maize inbred lines as inferred from DNA microsatellites. Genetics 165:2117–2128

    PubMed  CAS  Google Scholar 

  • Madeira Santos ME, Ferraz Torrão MM (1998) Chapter 3 In: Chastanet M (ed) Plantes et Paysages d’Afrique. Karthala et Cra, Paris, pp 69–83

  • Matsuoka Y, Vigouroux Y, Goodman MM, Sanchez GJ, Buckler E, Doebley J (2002) A single domestication for maize shown by multilocus microsatellite genotyping. Proc Natl Acad Sci USA 99:6080–6084

    Article  PubMed  CAS  Google Scholar 

  • Menkir A, Olowolafe MO, Ingelbrecht I, Fawole I, Badu-Apraku B, Vroh BI (2006) Assessment of testcross performance and genetic diversity of yellow endosperm maize lines derived from adapted x exotic backcrosses. Theor Appl Genet 11:90–99

    Article  Google Scholar 

  • Monfreda C, Ramankutty N, Foley JA (2008) Farming the planet: 2. Geographic distribution of crop areas, yields, physiological types, and net primary production in the year 2000. Global Biogeochimical Cycles 22:GB1022. doi:10.1029/2007GB002947

    Google Scholar 

  • Murgia C, Pritchard JK, Kim S, Fassati A, Weiss R (2006) Clonal origin and evolution of a transmissible cancer. Cell 126:477–487

    Article  PubMed  CAS  Google Scholar 

  • Pons O, Chaouche K (1995) Estimation, variance and optimal sampling of gene diversity. II. Diploid locus. Theor Appl Genet 91:122–130

    Article  Google Scholar 

  • Portères R (1955) L’introduction du maïs en Afrique. J Agric Trop Bot Appl 2:221–231

    Google Scholar 

  • Pray C (2006) The Asian Maize Biotechnology Network (AMBIONET): a model for strengthening national agricultural research systems. CIMMYT, Mexico

    Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    PubMed  CAS  Google Scholar 

  • R Development Core Team (2012) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. http://www.R-project.org/

  • Rebourg C, Chastanet M, Gouesnard B, Welcker C, Dubreuil P, Charcosset A (2003) Maize introduction into Europe: the history reviewed in the light of molecular data. Theor Appl Genet 106:895–903

    PubMed  CAS  Google Scholar 

  • Reif JC, Hamrit S, Heckenberger M, Schipprack Wm, Maurer HP, Bohn M, Melchinger AE (2005) Genetic structure and diversity of European flint maize populations determined with SSR analyses of individuals and bulks. Theor Appl Genet 111:906–913

    Article  PubMed  CAS  Google Scholar 

  • Rosenberg NA, Pritchard JK, Weber JL, Cann HM, Kidd KK, Zhivotovsky LA, Feldman MW (2002) Genetic structure of human populations. Science 298:2381–2385

    Article  PubMed  CAS  Google Scholar 

  • Sokal RR, Rohlf FJ (1995) Biometry. Freeman and Company, New York

    Google Scholar 

  • Timothy DH, Peña BV, Ramirez RE, Brown WL, Anderson E (1961) The races of maize in Chile. Natl Acad Sci - Natl Res Counc publ 847, Washington, DC

  • van Etten J, Hijmans RJ (2010) A geospatial modelling approach integrating archaeobotany and genetics to trace the origin and dispersal of domesticated plants. PLoS One 5(8):e12060. doi:10.1371/journal.pone.0012060

    Article  PubMed  Google Scholar 

  • van Heerwaarden J, Doebley J, Briggs WH, Glaubitz JC, Goodman MM, de Jesus Sanchez Gonzalez J, Ross-Ibarra J (2011) Genetic signals of origin, spread, and introgression in a large sample of maize landraces. Proc Natl Acad Sci USA 108:1088–1092

    Article  PubMed  Google Scholar 

  • Vigouroux Y, Glaubitz JC, Matsuoka Y, Goodman MM, Sanchez GJ, Doebley J (2008) Population structure and genetic diversity of New World maize races assessed by DNA microsatellites. Am J Bot 95:1240–1253

    Article  PubMed  Google Scholar 

  • Warburton ML, Reif JC, Frisch M, Bohn M, Bedoya C, Xia XC, Crossa J, Franco J, Hoisington D, Pixley K, Taba S, Melchinger AE (2008) Genetic diversity in CIMMYT nontemperate maize germplasm: landraces, open-pollinated varieties, and inbred lines. Crop Sci 48:617–624

    Article  Google Scholar 

  • Witcombe JR, Joshi A, Goyal SN (2003) Participatory plant breeding in maize: a case study from Gujarat, India. Euphytica 130:413–422

    Article  Google Scholar 

  • Zaide GF, Zaide SM (2004) Philippine History and Government. All-Nations Publishing Company, Quezon City

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Generation Challenge Program (grant 3005.14). We thank Drs. N. Lauter, M. Sawkins, M. Chastanet and C. Welcker for comments on manuscript; and the Banco Português de Germoplasma Vegetal for providing Portuguese material. Genetic dataset from this study is available on the Generation Challenge Program Central Registry website, at http://www.generationcp.org/gcp_central_registry.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. L. Warburton.

Additional information

Communicated by T. Luebberstedt.

C. Mir and T. Zerjal contributed equally to this paper.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 8644 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mir, C., Zerjal, T., Combes, V. et al. Out of America: tracing the genetic footprints of the global diffusion of maize. Theor Appl Genet 126, 2671–2682 (2013). https://doi.org/10.1007/s00122-013-2164-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-013-2164-z

Keywords

Navigation