Skip to main content
Log in

Targeted linkage map densification to improve cell wall related QTL detection and interpretation in maize

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Several QTLs for cell wall degradability and lignin content were previously detected in the F288 × F271 maize RIL progeny, including a set of major QTLs located in bin 6.06. Unexpectedly, allelic sequencing of genes located around the bin 6.06 QTL positions revealed a monomorphous region, suggesting that these QTLs were likely “ghost” QTLs. Refining the positions of all QTLs detected in this population was thus considered, based on a linkage map densification in most important QTL regions, and in several large still unmarked regions. Re-analysis of data with an improved genetic map (173 markers instead of 108) showed that ghost QTLs located in bin 6.06 were then fractionated over two QTL positions located upstream and downstream of the monomorphic region. The area located upstream of bin 6.06 position carried the major QTLs, which explained from 37 to 59 % of the phenotypic variation for per se values and extended on only 6 cM, corresponding to a physical distance of 2.2 Mbp. Among the 92 genes present in the corresponding area of the B73 maize reference genome, nine could putatively be considered as involved in the formation of the secondary cell wall [bHLH, FKBP, laccase, fasciclin, zinc finger C2H2-type and C3HC4-type (two genes), NF-YB, and WRKY]. In addition, based on the currently improved genetic map, eight QTLs were detected in bin 4.09, while only one QTL was highlighted in the initial investigation. Moreover, significant epistatic interaction effects were shown for all traits between these QTLs located in bin 4.09 and the major QTLs located in bin 6.05. Three genes related to secondary cell wall assembly (ZmMYB42, COV1-like, PAL-like) underlay QTL support intervals in this newly identified bin 4.09 region. The current investigations, even if they were based only on one RIL progeny, illustrated the interest of a targeted marker mapping on a genetic map to improve QTL position.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Andersen JR, Zein I, Wenzel G, Krutzfeldt B, Eder J, Ouzunova M, Lübberstedt T (2007) High levels of linkage disequilibrium and associations with forage quality at a Phenylalanine Ammonia-Lyase locus in European maize (Zea mays L.) inbreds. Theor Appl Genet 114:307–319

    Article  PubMed  CAS  Google Scholar 

  • Andersson-Gunneras S, Mellerowicz EJ, Love J, Segerman B, Ohmiya Y, Coutinho PM, Nilsson P, Henrissat B, Moritz T, Sundberg B (2006) Biosynthesis of cellulose-enriched tension wood in Populus: global analysis of transcripts and metabolites identifies biochemical and developmental regulators in secondary wall biosynthesis. Plant J 45:144–165

    Article  PubMed  Google Scholar 

  • Argillier O, Barrière Y, Hébert Y (1995) Genetic variation and selection criterion for digestibility traits of forage maize. Euphytica 82:175–184

    Article  Google Scholar 

  • Arruda P, Gerhardt IR (2010) Nucleic acid molecules encoding plant proteins in the C3HC4 family and methods for the alteration of plant cellulose and lignin content. US Patent App. 12/520, 266 US 2010/0077509 A1

  • Aufrère J, Michalet-Doreau B (1983) In vivo digestibility and prediction of digestibility of some by-products. In: EEC seminar, Melle-Gontrod, Belgium, 26–29 September, pp 25–33

  • Barrière Y, Gibelin C, Argillier O, Méchin V (2001) Genetic analysis and QTL mapping in forage maize based on recombinant inbred lines descended from the cross between F288 and F271. I—Yield, earliness, starch and crude protein content. Maydica 46:253–266

    Google Scholar 

  • Barrière Y, Guillet C, Goffner D, Pichon M (2003) Genetic variation and breeding strategies for improved cell wall digestibility in annual forage crops. Rev Anim Res 52:193–228

    Article  Google Scholar 

  • Barrière Y, Emile JC, Traineau R, Surault F, Briand M, Gallais A (2004a) Genetic variation for organic matter and cell wall digestibility in silage maize. Lessons from a 34-year long experiment with sheep in digestibility crates. Maydica 49:115–126

    Google Scholar 

  • Barrière Y, Ralph J, Méchin V, Guillaumie S, Grabber JH, Argillier O, Chabbert B, Lapierre C (2004b) Genetic and molecular basis of grass cell wall biosynthesis and degradability. II. Lessons from brown-midrib mutants. C R Biol 327:847–860

    Article  PubMed  Google Scholar 

  • Barrière Y, Riboulet C, Méchin V, Maltese S, Pichon M, Cardinal AJ, Lapierre C, Lübberstedt T, Martinant JP (2007) Genetics and genomics of lignification in grass cell walls based on maize as a model system. Genes Genomes Genomics 1:133–156

    Google Scholar 

  • Barrière Y, Méchin V, Lafarguette F, Manicacci D, Guillon F, Wang H, Lauressergues D, Pichon M, Bosio M, Tatout C (2009) Towards the discovery of maize cell wall genes involved in silage quality and capability to biofuel production. Maydica 54:161–198

    Google Scholar 

  • Barrière Y, Méchin V, Denoue D, Bauland C, Laborde J (2010) QTL for yield, earliness and cell wall digestibility traits in topcross experiments of F838 × F286 RIL progenies. Crop Sci 50:1761–1772

    Article  Google Scholar 

  • Barrière Y, Méchin V, Lefevre B, Maltese S (2012) QTLs for agronomic and cell wall traits in a maize RIL progeny derived from a cross between an old Minnesota13 line and a modern Iodent line. Theor Appl Genet 125:531–549

    Article  PubMed  Google Scholar 

  • Beavis WD (1998) QTL analyses: power, precision, and accuracy. In: Paterson AH (ed) Molecular dissection of complex traits. CRC Press, Boca Raton, pp 145–162

    Google Scholar 

  • Berthet S, Demont-Caulet N, Pollet B, Bidzinski P, Cezard L, Le Bris P, Borrega N, Herve J, Blondet E, Balzergue S, Lapierre C, Jouanin L (2011) Disruption of LACCASE4 and 17 results in tissue-specific alterations to lignification of Arabidopsis thaliana stems. Plant Cell 23:1124–1137

    Article  PubMed  CAS  Google Scholar 

  • Broman KW, Sen Ś (2009) A guide to QTL mapping with R/qtl. Springer, New York. ISBN 978-0-387-92124-2

    Book  Google Scholar 

  • Chavigneau H, Goué N, Courtial A, Jouanin L, Reymond M, Méchin V, Barrière Y (2012) QTL for floral stem lignin content and degradability in three recombinant inbred line (RIL) progenies of Arabidopsis thaliana and search for candidate genes involved in cell wall biosynthesis and degradability. OJGen 2:7–30

    Article  CAS  Google Scholar 

  • Churchill GA, Doerge RW (1994) Empirical threshold values for quantitative trait mapping. Genetics 138:963–971

    PubMed  CAS  Google Scholar 

  • Courtial A, Jourda C, Arribat S, Balzergue S, Huguet S, Reymond M, Grima-Pettenati J, Barrière Y (2012) Comparative expression of cell wall related genes in four maize RILs and one parental line of variable lignin content and cell wall degradability. Maydica 57:56–74

    Google Scholar 

  • Darvasi A, Weinreb A, Minke V, Weller JI, Soller M (1993) Detecting marker-QTL linkage and estimating QTL gene effect and map location using a saturated genetic-map. Genetics 134:943–951

    PubMed  CAS  Google Scholar 

  • De Givry S, Bouchez M, Chabrier P, Milan D, Schiex T (2005) CARTHAGENE: multipopulation integrated genetic and radiated hybrid mapping. Bioinformatics 21:1703–1704

    Article  PubMed  Google Scholar 

  • Dellaporta J, Hicks JB (1983) A plant DNA minipreparation: version II. Plant Mol Biol Rep 1:19–21

    Article  CAS  Google Scholar 

  • Dence C, Lin SY (1992) The determination of lignin. Methods in lignin chemistry. Springer, Berlin, pp 33–62

  • Dhillon B, Paul C, Zimmer E, Gurrath P, Klein D, Pollmer W (1990) Variation and covariation in stover digestibility traits in diallel crosses of maize. Crop Sci 30:931–936

    Article  Google Scholar 

  • Dolstra O, Medema JH (1990) An effective screening method for genetic improvement of cell-wall digestibility in forage maize. In: Proceedings 15th congress maize and sorghum section of Eucarpia, 4–8 June, Baden, pp 258–270

  • Fornalé S, Sonbol FM, Maes T, Capellades M, Puigdomènech P, Rigau J, Caparrós-Ruiz D (2006) Down-regulation of the maize and Arabidopsis thaliana caffeic acid O-methyl-transferase genes by two new maize R2R3-MYB transcription factors. Plant Mol Biol 62:809–823

    Article  PubMed  Google Scholar 

  • Fornalé S, Shi X, Chai C, Encina A, Irar S, Capellades M, Fuguet E, Torres JL, Rovira P, Puigdomènech P, Rigau J, Grotewold E, Gray J, Caparrós-Ruiz D (2010) ZmMYB31 directly represses maize lignin genes and redirects the phenylpropanoid metabolic flux. Plant J 64:633–644

    Article  PubMed  Google Scholar 

  • Freeman JS, Whittock SP, Potts BM, Vaillancourt RE (2009) QTL influencing growth and wood properties in Eucalyptus globulus. Tree Genet Genomes 5:713–722

    Article  Google Scholar 

  • Gion JM, Carouche A, Deweer S, Bedon F, Pichavant F, Charpentier JP, Bailleres H, Rozenberg P, Carocha V, Ognouabi N, Verhaegen D, Grima-Pettenati J, Vigneron P, Plomion C (2011) Comprehensive genetic dissection of wood properties in a widely-grown tropical tree: eucalyptus. BMC Genomics 12:301

    Article  PubMed  Google Scholar 

  • Goering HK, Van Soest PJ (1970) Forage fiber analysis (Apparatus, reagents, procedures and some applications). US Department of Agriculture Science Handbook n°379, pp 1–20

  • Grabber JH, Ralph J, Lapierre C, Barrière Y (2004) Genetic and molecular basis of grass cell-wall degradability. I. Lignin-cell wall matrix interactions. C R Biol 327:455–465

    Article  PubMed  CAS  Google Scholar 

  • Gray J, Caparrós-Ruiz D, Grotewold E (2012) Grass phenylpropanoids: regulate before using! Plant Sci 184:112–120

    Google Scholar 

  • Grima-Pettenati J, Soler M, Camargo E, Wang H (2012) Chapter 6—transcriptional regulation of the lignin biosynthetic pathway revisited: new players and insights. In: Lise Jouanin and Catherine Lapierre (eds) Advances in botanical research, Vol 61. Academic Press, pp 173–218

  • Haley CS, Knott SA (1992) A simple regression method for mapping quantitative trait loci in line crosses using flanking markers. Heredity 69:315–324

    Article  PubMed  CAS  Google Scholar 

  • Halpin C, Holt K, Chojecki J, Oliver D, Chabbert B, Monties B, Edwards K, Barakate A, Foxon GA (1998) Brown-midrib maize (bm1)—a mutation affecting the cinnamyl alcohol dehydrogenase gene. Plant J 14:545–553

    Article  PubMed  CAS  Google Scholar 

  • Harrar Y, Bellini C, Faure JD (2001) FKBPs: at the crossroads of folding and transduction. Trends Plant Sci 6:426–431

    Article  PubMed  CAS  Google Scholar 

  • Hatfield R, Fukushima RS (2005) Can lignin be accurately measured. Crop Sci 45:832–839

    Article  CAS  Google Scholar 

  • Hatfield RD, Jung HJG, Ralph J, Buxton DR, Weimer PJ (1994) A comparison of the insoluble residues produced by the Klason lignin and acid detergent lignin procedures. J Sci Food Agric 65:51–58

    Article  CAS  Google Scholar 

  • He X, Hall MB, Gallo-Meagher M, Smith RL (2003) Improvement of forage quality by downregulation of maize O-methyltransferase. Crop Sci 43:2240–2251

    Article  CAS  Google Scholar 

  • Heim MA, Jakoby M, Werber M, Martin C, Weisshaar B, Bailey PC (2003) The basic helix-loop-helix transcription factor family in plants: a genome-wide study of protein structure and functional diversity. Mol Biol Evol 20:735–747

    Article  PubMed  CAS  Google Scholar 

  • Jacquet G, Pollet B, Lapierre C (1995) New ether-linked ferulic acid-coniferyl alcohol dimers identified in grass straws. J Agric Food Chem 43:2746–2751

    Article  CAS  Google Scholar 

  • Jung H, Mertens D, Payne A (1997) Correlation of acid detergent lignin and Klason lignin with digestibility of forage dry matter and neutral detergent fiber. J Dairy Sci 80:1622–1628

    Article  PubMed  CAS  Google Scholar 

  • Kendall MG, Stuart A (1961) The advanced theory of statistics. In: Griffin C et al. (eds) Inference and relationship, vol 2, 3rd edn., London

  • Krakowsky M, Lee M, Beeghly H, Coors J (2003) Characterization of quantitative trait loci affecting fiber and lignin in maize (Zea mays L.). Maydica 48:283–292

    Google Scholar 

  • Krakowsky M, Lee M, Coors J (2005) Quantitative trait loci for cell-wall components in recombinant inbred lines of maize (Zea mays L.). I: stalk tissue. Theor Appl Genet 111:337–346

    Article  PubMed  CAS  Google Scholar 

  • Lander ES, Botstein D (1989) Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121:185–199

    PubMed  CAS  Google Scholar 

  • Legay S, Lacombe E, Goicoechea M, Briere C, Seguin A, MacKay J, Grima-Pettenati J (2007) Molecular characterization of EgMYB1, a putative transcriptional repressor of the lignin biosynthetic pathway. Plant Sci 173:542–549

    Article  CAS  Google Scholar 

  • Legay S, Sivadon P, Blervacq AS, Pavy N, Baghdady A, Tremblay L, Levasseur C, Ladouce N, Lapierre C, Séguin A, Hawkins S, Mackay J, Grima-Pettenati J (2010) EgMYB1, an R2R3 MYB transcription factor from eucalyptus negatively regulates secondary cell wall formation in Arabidopsis and poplar. New Phytol 188:774–786

    Article  PubMed  CAS  Google Scholar 

  • Lundvall J, Buxton D, Hallauer A, George J (1994) Forage quality variation among maize inbreds: in vitro digestibility and cell-wall components. Crop Sci 34:1672–1678

    Article  Google Scholar 

  • Markussen T, Fladung M, Achere V, Favre JM, Faivre-Rampant P, Aragones A, Perez DD, Harvengt L, Espinel S, Ritter E (2003) Identification of QTLs controlling growth, chemical and physical wood property traits in Pinus pinaster (Ait.). Silvae Genetica 52:8–15

    Google Scholar 

  • Martinez O, Curnow RN (1992) Estimating the locations and the sizes of the effects of quantitative trait loci using flanking markers. Theor Appl Genet 85:480–488

    Article  Google Scholar 

  • Parker G, Schofield R, Sundberg B, Turner S (2003) Isolation of COV1, a gene involved in the regulation of vascular patterning in the stem of Arabidopsis. Development 130:2139–2148

    Article  PubMed  CAS  Google Scholar 

  • Pichon M, Deswartes C, Gerentes D, Guillaumie S, Lapierre C, Toppan A, Barrière Y, Goffner D (2006) Variation in lignin and cell wall digestibility in caffeic acid O-methyltransferase down-regulated maize half-sib progenies in field experiments. Mol Breed 18:253–261

    Article  CAS  Google Scholar 

  • Pires N, Dolan L (2010) Origin and diversification of basic-helix-loop-helix proteins in plants. Mol Biol Evol 27:862–874

    Article  PubMed  CAS  Google Scholar 

  • Pot D, Rodrigues JC, Rozenberg P, Chantre G, Tibbits J, Cahalan C, Pichavant F, Plomion C (2006) QTLs and candidate genes for wood properties in maritime pine (Pinus pinaster Ait.). Tree Genet Genomes 2:10–24

    Article  Google Scholar 

  • Ralph J (2010) Hydroxycinnamates in lignification. Phytochem Rev 9:65–83

    Article  CAS  Google Scholar 

  • Ralph J, Helm RF, Quideau S, Hatfield RD (1992) Lignin feruloyl ester cross-links in grasses.1. Incorporation of feruloyl esters into coniferyl alcohol dehydrogenation polymers. J Chem Soc Perkin Trans 1:2961–2969

    Article  Google Scholar 

  • Ralph J, Grabber JH, Hatfield RD (1995) Lignin-ferulate cross-links in grasses—active incorporation of ferulate polysaccharide esters into ryegrass lignins. Carbohydr Res 275:167–178

    Article  CAS  Google Scholar 

  • Ramsay NA, Glover BJ (2005) MYB-bHLH-WD40 protein complex and the evolution of cellular diversity. Trends Plant Sci 10:63–70

    Article  PubMed  CAS  Google Scholar 

  • Ranjan P, Yin T, Zhang X, Kalluri U, Yang X, Jawdy S, Tuskan G (2010) Bioinformatics-based identification of candidate genes from QTLs associated with cell wall traits in Populus. Bioenerg Res 3:172–182

    Article  Google Scholar 

  • Rengel D, San Clemente H, Servant F, Ladouce N, Paux E, Wincker P, Couloux A, Sivadon P, Grima-Pettenati J (2009) A new genomic resource dedicated to wood formation in Eucalyptus. BMC Plant Biol 9:36

    Article  PubMed  Google Scholar 

  • Riboulet C, Lefèvre B, Denoue D, Barrière Y (2008) Genetic variation in maize cell wall for lignin content, lignin structure, p-hydroxycinnamic acid content, and digestibility in a set of 19 lines at silage harvest maturity. Maydica 53:11–19

    Google Scholar 

  • Roussel V, Gibelin C, Fontaine AS, Barrière Y (2002) Genetic analysis in recombinant inbred lines of early dent forage maize. II-QTL mapping for cell wall constituents and cell wall digestibility from per se value and top cross experiments. Maydica 47:9–20

    Google Scholar 

  • Sewell MM, Davis MF, Tuskan GA, Wheeler NC, Elam CC, Bassoni DL, Neale DB (2002) Identification of QTLs influencing wood property traits in loblolly pine (Pinus taeda L.). II. Chemical wood properties. TAG 104:214–222

    Article  PubMed  CAS  Google Scholar 

  • Shi H, Kim YS, Guo Y, Stevenson B, Zhu JK (2003) The Arabidopsis SOS5 locus encodes a putative cell surface adhesion protein and is required for normal cell expansion. Plant Cell 15:19–32

    Article  PubMed  CAS  Google Scholar 

  • Siefers N, Dang KK, Kumimoto RW, Bynum WE IV, Tayrose G, Holt BF III (2009) Tissue-specific expression patterns of Arabidopsis NF-Y transcription factors suggest potential for extensive combinatorial complexity. Plant Physiol 149:625–641

    Article  PubMed  CAS  Google Scholar 

  • Sonbol FM, Fornalé S, Cappellades M, Encina A, Tourino S, Torres JL, Rovira P, Ruel K, Puigdomenech P, Rigau J, Caparros-Ruiz D (2009) The maize ZmMYB42 represses the phenylpropanoid pathway and affects the cell wall structure, composition and degradability in Arabidopsis thaliana. Plant Mol Biol 70:283–296

    Article  PubMed  CAS  Google Scholar 

  • Struik P (1983) Physiology of forage maize (Zea mays L.) in relation to its production and quality. Ph. Dissertation, Agricultural University, 6700 GW Wageningen, The Netherlands, pp 1–252

  • Studer AJ, Doebley JF (2011) Do large effect QTL fractionate? A case study at the maize domestication QTL teosinte branched1. Genetics 188(3):673–681

    Article  PubMed  Google Scholar 

  • Tamasloukht B, Wong-Quai-Lam S, Martinez Y, Tozo K, Barbier O, Jourda S, Jauneau A, Borderies G, Balzergue S, Renou JP, Martinant JP, Tatout C, Lapierre C, Barrière Y, Goffner D, Pichon M (2011) Characterization of a cinnamoyl-CoA reductase (CCR) mutant in maize: effects on lignification, fiber development, and global gene expression. J Exp Bot 62:3837–3848

    Article  PubMed  CAS  Google Scholar 

  • Thimm O, Blasing O, Gibon Y, Nagel A, Meyer S, Kruger P, Selbig J, Muller LA, Rhee SY, Stitt M (2004) MAPMAN: a user-driven tool to display genomics data sets onto diagrams of metabolic pathways and other biological processes. Plant J 37:914–939

    Article  PubMed  CAS  Google Scholar 

  • Thomas J, Guillaumie S, Verdu C, Denoue D, Pichon M, Barrière Y (2010) Cell wall phenylpropanoid-related gene expression in early maize recombinant inbred lines differing in parental alleles at a major lignin QTL position. Mol Breed 25:105–124

    Article  CAS  Google Scholar 

  • Thumma B, Southerton S, Bell J, Owen J, Henery M, Moran G (2010) Quantitative trait locus (QTL) analysis of wood quality traits in Eucalyptus nitens. Tree Genet Genomes 6:305–317

    Article  Google Scholar 

  • Utz H, Melchinger A (1996) PLABQTL: a program for composite interval mapping of QTL. J Agric Genomics 2:1–6

    Google Scholar 

  • Schnable PS, Ware D, Fulton RS, Stein JC, Wei F, Pasternak S, Liang C, Zhang J, Fulton L, Graves TA, Minx P, Reily AD, Courtney L, Kruchowski SS, Tomlinson C, Strong C, Delehaunty K, Fronick C, Courtney B, Rock SM, Belter E, Du F, Kim K, Abbott RM, Cotton M, Levy A, Marchetto P, Ochoa K, Jackson SM, Gillam B, Chen W, Yan L, Higginbotham J, Cardenas M, Waligorski J, Applebaum E, Phelps L, Falcone J, Kanchi K, Thane T, Scimone A, Thane N, Henke J, Wang T, Ruppert J, Shah N, Rotter K, Hodges J, Ingenthron E, Cordes M, Kohlberg S, Sgro J, Delgado B, Mead K, Chinwalla A, Leonard S, Crouse K, Collura K, Kudrna D, Currie J, He R, Angelova A, Rajasekar S, Mueller T, Lomeli R, Scara G, Ko A, Delaney K, Wissotski M, Lopez G, Campos D, Braidotti M, Ashley E, Golser W, Kim H, Lee S, Lin J, Dujmic Z, Kim W, Talag J, Zuccolo A, Fan C, Sebastian A, Kramer M, Spiegel L, Nascimento L, Zutavern T, Miller B, Ambroise C, Muller S, Spooner W, Narechania A, Ren L, Wei S, Kumari S, Faga B, Levy MJ, McMahan L, Van Buren P, Vaughn M,W, Ying K, Yeh C,-T, Emrich S,J, Jia Y, Kalyanaraman A, Hsia A-P, Barbazuk WB, Baucom RS, Brutnell TP, Carpita NC, Chaparro C, Chia J-M, Deragon J-M, Estill JC, Fu Y, Jeddeloh JA, Han Y, Lee H, Li P, Lisch DR, Liu S, Liu Z, Nagel DH, McCann MC, SanMiguel P, Myers AM, Nettleton D, Nguyen J, Penning BW, Ponnala L, Schneider KL, Schwartz DC, Sharma A, Soderlund C, Springer NM, Sun Q, Wang H, Waterman M, Westerman R, Wolfgruber TK, Yang L, Yu Y, Zhang L, Zhou S, Zhu Q, Bennetzen JL, Dawe RK, Jiang J, Jiang N, Presting GG, Wessler SR, Aluru S, Martienssen RA, Clifton SW, McCombie WR, Wing RA, Wilson RK (2009) The B73 maize genome: complexity, diversity, and dynamics. Science 326:1112–1115

    Google Scholar 

  • Vignols F, Rigau J, Torres MA, Capellades M, Puigdomenech P (1995) The brown midrib3 (bm3) mutation in maize occurs in the gene encoding caffeic acid O-methyltransferase. Plant Cell 7:407–416

    PubMed  CAS  Google Scholar 

  • Wissenbach M, Uberlacker B, Vogt F, Becker D, Salamini F, Rohde W (1993) MYB genes from Hordeum vulgare—tissue-specific expression of chimeric MYB Promoter/Gus genes in transgenic tobacco. Plant J 4:411–422

    Article  PubMed  CAS  Google Scholar 

  • Xu S (2003) Theoretical basis of the Beavis effect. Genetics 165:2259–2268

    PubMed  Google Scholar 

  • Yan J, Yang X, Shah T, Sánchez-Villeda H, Li J, Warburton M, Zhou Y, Crouch JH, Xu Y (2010) High-throughput SNP genotyping with the GoldenGate assay in maize. Mol Breed 25(3):441–451

    Article  CAS  Google Scholar 

  • Yang C, Xu Z, Song J, Conner K, Vizcay Barrena G, Wilson ZA (2007) Arabidopsis MYB26/MALE STERILE35 regulates secondary thickening in the endothecium and is essential for anther dehiscence. Plant Cell 19:534–548

    Article  PubMed  CAS  Google Scholar 

  • Yin T, Zhang X, Gunter L, Priya R, Sykes R, Davis M, Wullschleger SD, Tuskan GA (2010) Differential detection of genetic Loci underlying stem and root lignin content in Populus. PLoS ONE 5(11):e14021

    Article  PubMed  Google Scholar 

  • Zeng ZB (1994) Precision mapping of quantitative trait loci. Genetics 136:1457–1468

    PubMed  CAS  Google Scholar 

  • Zheng Z, Qamar SA, Chen Z, Mengiste T (2006) Arabidopsis WRKY33 transcription factor is required for resistance to necrotrophic fungal pathogens. Plant J 48:592–605

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work has been funded by the maize breeding companies involved in the PROMAÏS—INRA network on maize cell wall lignification and digestibility (Advanta, Caussade Semences, Limagrain Europe, MaïsAdour, Monsanto SAS, Pioneer Génétique, Pau Euralis, R2n RAGT Semences, SDME KWS France, Syngenta seeds). We thank Christiane Minault, Dominique Denoue and Pascal Vernoux for seed multiplications and plant cropping and sampling at INRA Lusignan. We also thank Jacques Laborde, who managed seed multiplications at INRA, St Martin de Hinx, France. We are grateful to Fabien Mounet for his fruitful criticisms.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yves Barrière.

Additional information

Communicated by T. Luebberstedt.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 47.3 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Courtial, A., Thomas, J., Reymond, M. et al. Targeted linkage map densification to improve cell wall related QTL detection and interpretation in maize. Theor Appl Genet 126, 1151–1165 (2013). https://doi.org/10.1007/s00122-013-2043-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-013-2043-7

Keywords

Navigation