Skip to main content
Log in

Development of COS-SNP and HRM markers for high-throughput and reliable haplotype-based detection of Lr14a in durum wheat (Triticum durum Desf.)

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Leaf rust (Puccinia triticina Eriks. & Henn.) is a major disease affecting durum wheat production. The Lr14a-resistant gene present in the durum wheat cv. Creso and its derivative cv. Colosseo is one of the best characterized leaf-rust resistance sources deployed in durum wheat breeding. Lr14a has been mapped close to the simple sequence repeat markers gwm146, gwm344 and wmc10 in the distal portion of the chromosome arm 7BL, a gene-dense region. The objectives of this study were: (1) to enrich the Lr14a region with single nucleotide polymorphisms (SNPs) and high-resolution melting (HRM)-based markers developed from conserved ortholog set (COS) genes and from sequenced Diversity Array Technology (DArT®) markers; (2) to further investigate the gene content and colinearity of this region with the Brachypodium and rice genomes. Ten new COS-SNP and five HRM markers were mapped within an 8.0 cM interval spanning Lr14a. Two HRM markers pinpointed the locus in an interval of <1.0 cM and eight COS-SNPs were mapped 2.1–4.1 cM distal to Lr14a. Each marker was tested for its capacity to predict the state of Lr14a alleles (in particular, Lr14-Creso associated to resistance) in a panel of durum wheat elite germplasm including 164 accessions. Two of the most informative markers were converted into KASPar® markers. Single assay markers ubw14 and wPt-4038-HRM designed for agarose gel electrophoresis/KASPar® assays and high-resolution melting analysis, respectively, as well as the double-marker combinations ubw14/ubw18, ubw14/ubw35 and wPt-4038-HRMubw35 will be useful for germplasm haplotyping and for molecular-assisted breeding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aguilar-Rincón VH, Singh RP, Castillo GF, Huerta-Espino J (2001) Genes de resistencia a la roya de la hoja en un trigo sintético hexaploide. Rev Fitotec Mex 24:161–169

    Google Scholar 

  • Akbari M, Wenzl P, Caig V, Carling J, Xia L, Yang S, Uszynski G, Mohler V, Lehmensiek A, Kuchel H, Hayden M, Howes N, Sharp P, Vaughan P, Rathmell B, Huttner E, Kilian A (2006) Diversity arrays technology (DArT) for high-throughput profiling of the hexaploid wheat genome. Theor Appl Genet 113:1409–1420

    Article  PubMed  CAS  Google Scholar 

  • Allen AM, Barker GL, Berry ST, Coghill JA, Gwilliam R, Kirby S, Robinson P, Brenchley RC, D’Amore R, McKenzie N, Waite D, Hall A, Bevan M, Hall N, Edwards KJ (2011) Transcript-specific, single nucleotide polymorphism discovery and linkage analysis in hexaploid bread wheat (Triticum aestivum L.). Plant Biotechnol J 9:1086–1099

    Article  PubMed  CAS  Google Scholar 

  • Amaro LAM, Mir SGL, Huerta Hespino J, Mir EV (2007) Genetics of leaf rust resistance (Puccinia triticina E.) in elite durum wheat lines. Rev Fitotec Mex 30:33–38

    Google Scholar 

  • Autrique E, Singh R, Tanksley SD, Sorrells ME (1995) Molecular markers for four leaf rust genes introgressed into wheat from wild relatives. Genome 38:75–83

    Article  PubMed  CAS  Google Scholar 

  • Azhaguvel JC, Yaqin R, Ming-Cheng M, Weng LY (2012) Fine genetic mapping of greenbug aphid-resistance gene Gb3 in Aegilops tauschii Perumal. Theor Appl Genet 124:555–564

    Article  PubMed  CAS  Google Scholar 

  • Badaeva D, Dedkova OS, Gay G, Pukhalskyi VA, Zelenin AV, Bernard S, Bernard M (2007) Chromosomal rearrangements in wheat: their types and distribution. Genome 50:907–926

    Article  PubMed  CAS  Google Scholar 

  • Barabino SML, Hubner W, Jenny A, Minvielle-Sebastia L, Keller W (1997) The 30-kD subunit of mammalian clevage and polyadenylation specificity factor and its yeast homolog are RNA-binding zinc finger proteins. Genes Dev 11:1703–1716

    Article  PubMed  CAS  Google Scholar 

  • Bolot S, Abrouk M, Masood-Quraishi U, Stein N, Messing J, Feuillet C, Salse J (2009) The ‘inner circle’ of the cereal genomes. Curr Opin Plant Biol 12:1–7

    Article  CAS  Google Scholar 

  • Bossolini E, Wicker T, Knobel PA, Keller B (2007) Comparison of orthologous loci from small grass genomes Brachypodium and rice: implications for wheat genomics and grass genome annotation. Plant J 49:704–717

    Article  PubMed  CAS  Google Scholar 

  • Botticella E, Sestili F, Hernandez-Lopez A, Phillips A, La Fiandra D (2011) High resolution melting analysis for the detection of EMS induced mutations in wheat SbeIIa genes. BMC Plant Biol 11:156

    Article  PubMed  CAS  Google Scholar 

  • Bozkurt O, Hakki EE, Akkaya MS (2007) Isolation and sequence analysis of wheat NBS-LRR type disease resistance gene analogs using degenerate PCR primers. Biochem Genet 4:469–486

    Article  CAS  Google Scholar 

  • Browder LE (1972) Designation of two genes for resistance to Puccinia recondita in Triticum aestivum. Crop Sci 12:705–706

    Article  Google Scholar 

  • Burt C, Hollins TW, Nicholson P (2011) Identification of a QTL conferring seedling and adult plant resistance to eyespot on chromosome 5A of Cappelle Desprez. Theor Appl Genet 122:119–128

    Article  PubMed  CAS  Google Scholar 

  • Byers RL, Harker DB, Yourstone SM, Maughan PJ, Udall JA (2012) Development and mapping of SNP assays in allotetraploid cotton. Theor Appl Genet 124:1201–1214

    Article  PubMed  CAS  Google Scholar 

  • Ceoloni C, Biagetti M, Ciaffi M, Forte P, Pasquini M (1996) Wheat chr. engineering at the 4× level: the potential of different alien gene transfers into durum wheat. Euphytica 89:87–97

    Article  CAS  Google Scholar 

  • De Givry S, Bouchez M, Chabrier P, Milan D, Schiex T (2005) Carthagene: multi population integrated genetic and radiated hybrid mapping. Bioinformatics 21:1703–1704

    Article  PubMed  CAS  Google Scholar 

  • De Vita P, Nicosia OLD, Nigro F, Platani C, Riefolo C, Di Fonzo N, Cattivelli L (2007) Breeding progress in morpho-physiological, agronomical and qualitative traits of durum wheat cultivars released in Italy during the 20th century. Eur J Agron 26:39–53

    Article  Google Scholar 

  • De Vita P, Mastrangelo AM, Matteu L, Mazzucotelli E, Virzi N, Palumbo M, Lo Storto M, Rizza F, Cattivelli L (2010) Genetic improvement effects on yield stability in durum wheat genotypes grown in Italy. Fields Crops Res 119:68–77

    Article  Google Scholar 

  • Ding J, Zhang W, Jung Z, Chen JQ, Tian D (2007) Unique pattern of R0 gene variation within populations in Arabidopsis. Mol Genet Genomics 277:619–629

    Article  PubMed  CAS  Google Scholar 

  • Dolezel J, Kubalakova M, Paux E, Bartos J, Feuillet C (2007) Chromosome-based genomics in cereals. Chromosome Res 15:51–66

    Article  PubMed  CAS  Google Scholar 

  • Dong C, Vincent K, Sharp S (2009) Simultaneous mutation detection of three homoeologous genes in wheat by high resolution melting analysis and mutation surveyor. BMC Plant Biol 9:143

    Article  PubMed  CAS  Google Scholar 

  • Driscoll CJ, Anderson LM (1967) Cytogenetic studies of Transec—a wheat-rye translocation line. Can J Genet Cytol 9:375–380

    Google Scholar 

  • Dubcovsky J, Lukaszewski AJ, Echaide M, Antonelli EF, Porter DR (1998) Molecular characterization of two Triticum speltoides interstitial translocations carrying leaf rust and greenbug resistance genes. Crop Sci 38:1655–1660

    Article  CAS  Google Scholar 

  • Dvorak J, Akhunov ED, Akhunov AR, Deal KR, Luo MC (2006) Molecular characterization of a diagnostic DNA marker for domesticated tetraploid wheat provides evidence for gene flow from wild tetraploid wheat to hexaploid wheat. Mol Biol Evol 23:1386–1396

    Article  PubMed  CAS  Google Scholar 

  • Dyck PL (1994) The transfer of leaf rust resistance from Triticum turgidum ssp. dicoccoides to hexaploid wheat. Plant Sci 74:671–673

    Google Scholar 

  • Dyck PL, Kerber ER (1971) Chromosome location of three genes for leaf rust resistance in common wheat. Can J Genet Cytol 13:480–483

    Google Scholar 

  • Dyck PL, Kerber ER (1977) Inheritance of leaf rust resistance in wheat cultivars Rafaela and EAP 26127 and chromosome location of gene Lr17. Can J Genet Cytol 19:355–358

    Google Scholar 

  • Elouafi I, Nachit MM (2004) A genetic linkage map of the Durum × Triticum dicoccoides backcross population based on SSR and AFLP markers, and QTL analysis for milling traits. Theor Appl Genet 108:401–413

    Article  PubMed  CAS  Google Scholar 

  • Estoup A, Cornuet JM (1999) Microsatellite evolution: inferences from population data. In: Goldstein DB, Schlötterer C (eds) Microsatellites: evolution and applications. Oxford University Press, Oxford, pp 49–64

    Google Scholar 

  • Eversole K (2009) Advancements toward sequencing the bread wheat genome: an update of the projects of the International Wheat Genome Sequencing Consortium. Annu Wheat Newsl 55:11–16

    Google Scholar 

  • Feuillet C, Keller B (2002) Comparative genomics in the grass family: molecular characterization of grass genome structure and evolution. Ann Bot Lond 89:3–10

    Article  CAS  Google Scholar 

  • Feuillet C, Langridge P, Waugh R (2008) Cereal breeding takes a walk on the wild side. Trends Genet 24:24–32

    Article  PubMed  CAS  Google Scholar 

  • Goldstein DB, Linares AR, Cavalli-Sforza LL, Feldman MW (1995) An evaluation of genetic distances for use with microsatellite loci. Genetics 7:463–471

    Google Scholar 

  • Goyeau H, Ammar K, Berder J (2010) Virulence in Puccinia triticina for durum wheat cultivar Creso and other durum wheat cultivars carrying resistance gene Lr14a in France. Plant Dis 94:1068

    Article  Google Scholar 

  • Gupta PK, Langridge P, Mir RR (2010) Marker-assisted wheat breeding: present status and future possibilities. Mol Breed 26:145–161

    Article  Google Scholar 

  • Haggag MEA, Dyck PL (1973) The inheritance of leaf rust resistance in four common wheat varieties possessing genes at or near the Lr3 locus. Can J Genet Cytol 15:127–134

    Google Scholar 

  • Han Y, Kang Y, Torres-Jerez I, Cheung F, Town CD, Zhao PX, Udvardi MK, Monteros MJ (2011) Genome-wide SNP discovery in tetraploid alfalfa using 454 sequencing and high resolution melting analysis. BMC Genomics 12:350

    Article  CAS  Google Scholar 

  • He XY, He ZH, Ma W, Appels R, Xia XC (2009) Allelic variants of phytoene synthase 1 (Psy1) genes in Chinese and CIMMYT wheat cultivars and development of functional markers for flour colour. Mol Breed 23:553–563

    Article  CAS  Google Scholar 

  • Helguera M, Khan IA, Dubcovsky J (2000) Development of PCR markers for the wheat leaf rust resistance gene Lr47. Theor Appl Genet 100:1137–1143

    Article  CAS  Google Scholar 

  • Herrera-Foessel SA, Singh RP, Huerta-Espino J, Yuen J, Djurle A (2005) New genes for leaf rust resistance in CIMMYT durum wheats. Plant Dis 89:809–814

    Article  CAS  Google Scholar 

  • Herrera-Foessel SA, Singh RP, Huerta-Espino J, Crossa J, Yuen J, Djurle A (2006) Effect of leaf rust on grain yield and yield traits of durum wheats with race-specific and slow-rusting resistance to leaf rust. Plant Dis 90:1065–1072

    Article  Google Scholar 

  • Herrera-Foessel SA, Singh RP, Huerta-Espino J, Crossa J, Djurle A, Yuen J (2007a) Evaluation of slow rusting resistance components to leaf rust in CIMMYT durum wheats. Euphytica 155:361–369

    Article  Google Scholar 

  • Herrera-Foessel SA, Singh RP, Huerta-Espino J, William HM, Rosewarne G, Djurle A, Yuen J (2007b) Identification and mapping of Lr3 and a linked leaf rust resistance gene in durum wheat. Crop Sci 47:1459–1466

    Article  CAS  Google Scholar 

  • Herrera-Foessel SA, Djurle A, Yuen J, Singh RP, William HM, Garcia V, Huerta-Espino J (2008a) Identification and molecular characterization of leaf rust resistance gene Lr14a in durum wheat. Plant Dis 92:469–473

    Article  CAS  Google Scholar 

  • Herrera-Foessel SA, Singh RP, Huerta-Espino J, William HM, Djurle A, Yuen J (2008b) Molecular mapping of a leaf rust resistance gene on the short arm of chromosome 6B of durum wheat. Plant Dis 92:1650–1654

    Article  CAS  Google Scholar 

  • Herrera-Foessel SA, Singh RP, Huerta-Espino J, William HM, Djurle A, Yuen J (2008c) Genetic analysis of slow-rusting resistance to leaf rust in durum wheat. Crop Sci 48:2132–2140

    Article  Google Scholar 

  • Higgins JA, Bailey PC, Laurie DA (2010) Comparative genomics of flowering time pathways using Brachypodium distachyon as a model for the temperate grasses. PLoS ONE 5:e10065

    Article  PubMed  CAS  Google Scholar 

  • Huerta-Espino J, Roelfs AP (1989) Physiological specialization of leaf rust on durum wheat. Phytopathol 79:1218

    Google Scholar 

  • Huerta-Espino J, Roelfs AP (1992) Leaf rust on durum wheat. Vortr Pflanzenzuchtg 24:100–102

    Google Scholar 

  • Huerta-Espino R, Singh P, Germán S, McCallum BD, Park RF, Chen WQ, Bhardwaj SC, Goyeau H (2011) Global status of wheat leaf rust caused by Puccinia triticina. Euphytica 179:143–160

    Article  Google Scholar 

  • Jun TH, Kang ST (2012) Genetic map of lps3: a new short petiole gene in soybeans. Genome 55:140–146

    Article  PubMed  CAS  Google Scholar 

  • Kassem M, El-Ahmed A, Hakim MS, Al-Saleh A, El-Khalifeh M, Nachit M (2011) Identifying leaf rust resistance gene Lr19 in durum wheat using simple sequence repeat (SSR) marker. Afr J Biotechnol 44:8716–8719

    Google Scholar 

  • Keller B, Feuillet C, Yahiaoui N (2005) Map-based isolation of disease resistance genes from bread wheat: cloning in a supersize genome. Genet Res 85:93–100

    Article  PubMed  CAS  Google Scholar 

  • Koebner RMD, Summers RW (2003) 21st century wheat breeding: plot selection or plate detection. Trends Biotechnol 21:59–63

    Article  PubMed  CAS  Google Scholar 

  • Kump KL, Bradbury PJ, Wisser RJ, Buckler ES, Belcher AR, Oropeza-Rosas MA, Zwonitzer JC, Kresovich S, McMullen MD, Ware D, Balint-Kurti PJ, Holland JB (2011) Genome-wide association study of quantitative resistance to southern leaf blight in the maize nested association mapping population. Nat Genet 43:163–168

    Article  PubMed  CAS  Google Scholar 

  • La H, Li J, Ji Z, Cheng Y, Li X, Jiang S, Venkatesh PN, Ramachandran S (2006) Genome-wide analysis of cyclin family in rice (Oryza sativa L.). Mol Gen Genomics 275:374–386

    Article  CAS  Google Scholar 

  • Lin S, Zhou Y, Chen G, Zhang Y, Zhang Y, Ning W, Pan D (2010) Molecular responses to the fungal pathogen Gibberella fujikuroi in the leaves of chewing cane (Saccharum officinarum L.). Sugar Technol 12:36–46

    Article  CAS  Google Scholar 

  • Liu S, Zhang X, Pumphrey MO, Stack RW, Gill BS, Anderson JA (2006) Complex microcollinearity among wheat, rice, and barley revealed by fine mapping of the genomic region harboring a major QTL for resistance to fusarium head blight in wheat. Funct Integr Genomics 6:83–89

    Article  PubMed  CAS  Google Scholar 

  • Liu H, Wang X, Zhang H, Yang Y, Ge X, Song F (2008) A rice serine carboxypeptidase-like gene OsBISCPL1 is involved in regulation of defense responses against biotic and oxidative stress. Gene 420:57–65

    Article  PubMed  CAS  Google Scholar 

  • Long DL, Kolmer JA (1989) A North American system of nomenclature for Puccinia recondita f. sp. tritici. Phytopathology 79:525–529

    Article  Google Scholar 

  • Maccaferri M, Sanguineti MC, Xie C, Smith JSC, Tuberosa R (2007) Relationships among durum wheat accessions. II. A comparison of molecular and pedigree information. Genome 50:385–399

    Article  PubMed  CAS  Google Scholar 

  • Maccaferri M, Mantovani P, Tuberosa R, Deambrogio E, Giuliani S, Demontis A, Massi A, Sanguineti MC (2008) A major QTL for durable leaf rust resistance widely exploited in durum wheat breeding programs maps on the distal region of chromosome arm 7BL. Theor Appl Genet 117:1225–1240

    Article  PubMed  CAS  Google Scholar 

  • Maccaferri M, Sanguineti MC, Mantovani P, Demontis A, Massi A, Ammar K, Kolmer JA, Czembor JH, Ezrati S, Tuberosa R (2010) Association mapping of leaf rust response in durum wheat. Mol Breed 26:189–228

    Article  CAS  Google Scholar 

  • Maccaferri M, Sanguineti MC, Demontis A, El-Ahmed A, del Moral LG, Maalouf F, Nachit M, Nserallah N, Ouabbou H, Rhouma S, Royo C, Villegas D, Tuberosa R (2011) Association mapping in durum wheat grown across a broad range of water regimes. J Exp Bot 62:409–438

    Article  PubMed  CAS  Google Scholar 

  • Maleki L, Faris JD, Bowden RL, Gill BS, Fellers JP (2003) Physical and genetic mapping of wheat kinase analogs and NBS-LRR resistance gene analog. Crop Sci 43:660–670

    Article  CAS  Google Scholar 

  • Mantovani P, Maccaferri M, Sanguineti MC, Tuberosa R, Catizone I, Wenzl P, Thomson B, Carling J, Huttner E, De Ambrogio E, Kilian A (2008) An integrated DArT-SSR linkage map of durum wheat. Mol Breed 22:629–648

    Article  CAS  Google Scholar 

  • Mantovani P, Maccaferri M, Tuberosa R, Kolmer JA (2010) Virulence phenotypes and molecular genotypes in collections of Puccinia triticina from Italy. Plant Dis 94:420–424

    Article  Google Scholar 

  • Marone D, Del Olmo AI, Laido G, Sillero JC, Emeran AA, Russo MA, Ferragonio P, Giovanniello V, Mazzucotelli E, De Leonardis AM, De Vita P, Blanco A, Cattivelli L, Rubiales D, Mastrangelo AM (2009) Genetic analysis of durable resistance against leaf rust in durum wheat. Mol Breed 24:25–39

    Article  CAS  Google Scholar 

  • Martinez F, Rubiales D (2002) Resistance to leaf rust in the durum wheat Creso. Cer Rus Pow Mil Bull 2002/1130

  • Martinez F, Sillero JC, Rubiales D (2007) Resistance to leaf rust in cultivars of bread wheat and durum wheat grown in Spain. Plant Breed 126:13–18

    Article  Google Scholar 

  • McFadden ES (1930) A successful transfer of emmer characters to vulgare wheat. J Am Soc Agron 22:1020–1034

    Article  Google Scholar 

  • McHale L, Tan X, Khoel P, Michelmore RW (2006) Plant NBS-LRR proteins: adaptable guards. Genome Biol 7:212

    Article  PubMed  CAS  Google Scholar 

  • McIntosh RA, Dick PL (1975) Cytogenetical studies in wheat VII. Gene Lr23 for reaction to Puccinia recondita in Gabo and related cultivars. Aust J Biol Sci 28:201–211

    Google Scholar 

  • McIntosh RA, Hart GE, Devos KM, Gale MD, Rogers WJ (1998) Catalog of gene symbols for wheat. In: Proceedings of the 9th International Wheat Genet Symp, Saskatoon, pp 1–235

  • McIntosh RA, Devos KM, Dubcovsky J, Rogers WJ, Morris CF, Appels R, Somers DJ, Anderson OA (2011) Catalogue of gene symbols for wheat: 2011 supplement. In: 11th International Wheat Genetics Symposium, Brisbane, Australia

  • McNeal FH, Konzak CF, Smith EP, Tate WS, Russell TS (1971) A uniform system for recording and processing cereal research data. USDA, Agricultural Research Service, Washington, DC, pp 34–121

  • Meuwissen TH, Goddard ME (2001) Prediction of identity by descent probabilities from marker-haplotypes. Genet Sel Evol 33:605–634

    Article  PubMed  CAS  Google Scholar 

  • Meuwissen TH, Hayes BJ, Goddard ME (2001) Prediction of total genetic value using genome-wide dense marker maps. Genetics 157:1819–1829

    PubMed  CAS  Google Scholar 

  • Mucha A, Wierzbicki H (2012) Linear models for breeding values prediction in haplotype-assisted selection—an analysis of QTL-MAS Workshop 2011 Data. BMC Proc 6:S11

    Article  PubMed  Google Scholar 

  • Mugford ST, Qi X, Bakht S, Hill L, Wegel E, Hughes R, Papadopoulou K, Melton R, Philo M, Sainsbury F, Lomonossoff GP, Roy AD, Goss RJM, Osbourn A (2009) A serine carboxypeptidase-like acyltransferase is required for synthesis of antimicrobial compounds and disease resistance in oats. Plant Cell 21:2473–2484

    Article  PubMed  CAS  Google Scholar 

  • Nijman IJ, Kuipers S, Verheul M, Guryev V, Cuppen E (2008) A genome-wide SNP panel for mapping and association studies in the rat. BMC Genomics 9:95

    Article  PubMed  CAS  Google Scholar 

  • Ordoñez ME, Kolmer JA (2007) Simple sequence repeat diversity of a worldwide collection of Puccinia triticina from durum wheat. Phytopathol 97:574–583

    Article  CAS  Google Scholar 

  • Orrù L, Catillo G, Napolitano F, De Matteis G, Scatà MC, Signorelli F, Moioli B (2009) Characterization of a SNPs panel for meat traceability in six cattle breeds. Food Control 20:856–860

    Article  CAS  Google Scholar 

  • Ouyang S, Zhu W, Hamilton J, Lin H, Campbell M, Childs K, Thibaud-Nissen F, Malek RL, Lee Y, Zheng L, Orvis J, Haas B, Wortman J, Buell CR (2007) The TIGR Rice Genome Annotation Resource: improvements and new features. Nucleic Acids Res 35:D883–D887

    Article  PubMed  CAS  Google Scholar 

  • Paux E, Sourdille P, Salse J, Saintenac C, Choulet F, Leroy P, Korol A, Michalak M, Kianian S, Spielmeyer W, Lagudah E, Somers D, Kilian A, Alaux M, Vautrin S, Bergès H, Eversole K, Appels R, Safar J, Simkova H, Dolezel J, Bernard M, Feuillet C (2008) A physical map of the 1-gigabase bread wheat chromosome 3B. Science 322:101–104

    Article  PubMed  CAS  Google Scholar 

  • Paux E, Sourdille P, Mackay I, Feuillet C (2011) Sequence-based marker development in wheat: advances and applications to breeding. Biotechnol Adv. doi:10.1016/j.biotechadv.2011.09.015

    PubMed  Google Scholar 

  • Pollock DD, Bergman A, Feldman MW, Goldstein DB (1998) Microsatellite behavior with range constraints: parameter estimation and improved distances for use in phylogenetic reconstruction. Theor Popul Biol 53:256–271

    Article  PubMed  CAS  Google Scholar 

  • Qin B, Cao A, Wang H, Chen T, You FM, Liu Y, Ji J, Liu D, Chen P, Wang XE (2011) Collinearity-based marker mining for the fine mapping of Pm6, a powdery mildew resistance gene in wheat. Theor Appl Genet 123:207–218

    Article  PubMed  Google Scholar 

  • Qin H, Feng S, Chen C, Guo Y, Knapp S, Culbreath A, He G, Wang ML, Zhang X, Holbrook CC, Ozias-Akins P, Guo B (2012) An integrated genetic linkage map of cultivated peanut (Arachis hypogaea L.) constructed from two RIL populations. Theor Appl Genet 124:653–664

    Article  PubMed  Google Scholar 

  • Quarrie SA, Steed A, Calestani C, Semikhodskii A, Lebreton C, Chinoy C, Steele N, Pljevljakusic D, Waterman E, Weyen J, Schondelmaier J, Habash DZ, Farmer P, Saker L, Clarkson DT, Abugalieva A, Yessimbekova M, Turuspekov Y, Abugalieva S, Tuberosa R, Sanguineti MC, Hollington PA, Aragués R, Royo A, Dodig D (2005) A high-density genetic map of hexaploid wheat (Triticum aestivum L.) from the cross Chinese Spring × SQ1 and its use to compare QTLs for grain yield across a range of environments. Theor Appl Genet 110:865–880

    Article  PubMed  CAS  Google Scholar 

  • Quraishi UM, Abrouk M, Bolot S, Pont C, Throude M, Guilhot N, Confolent C, Bortolini F, Praud S, Murigneux A, Gilles C, Salse G (2009) Genomics in cereals: from genome-wide conserved orthologous set (COS) sequences to candidate genes for trait dissection. Funct Integr Genomics 9:473–484

    Article  PubMed  CAS  Google Scholar 

  • Quraishi UM, Murat F, Abrouk M, Pont C, Confolent C, Oury FX, Ward J, Boros D, Gebruers K, Delcour JA, Courtin CM, Bedo Z, Saulnier L, Guillon F, Balzergue S, Shewry PR, Feuillet C, Charmet G, Salse J (2011) Combined meta-genomics analyses unravel candidate genes for the grain dietary fiber content in bread wheat (Triticum aestivum L.). Funct Integr Genomics 11:71–83

    Article  PubMed  CAS  Google Scholar 

  • Saintenac C, Jiang D, Akhunov E (2011) Targeted analysis of nucleotide and copy number variation by exon capture in allotetraploid wheat genome. Genome Biol 12:88

    Article  CAS  Google Scholar 

  • Schnurbusch T, Collins NC, Eastwood RF, Sutton T, Jefferies SP, Langridge P (2007) Fine mapping and targeted SNP survey using rice-wheat gene colinearity in the region of the Bo1 boron toxicity tolerance locus of bread wheat. Theor Appl Genet 115:451–461

    Article  PubMed  CAS  Google Scholar 

  • Schuelke M (2000) An economic method for the fluorescent labeling of PCR fragments. Nat Biotechnol 18:233–234

    Article  PubMed  CAS  Google Scholar 

  • Shynbolat R, Aralbek R (2010) Evaluation of leaf rust resistance genes in durum wheat varieties in Kazakhstan. Asian Australas J Plant Sci Biotechnol 4:77–80

    Google Scholar 

  • Šimková H, Svensson JT, Condamine P, Hřibová E, Suchánková P, Bhat PR, Bartoš J, Šafář J, Close TJ, Doležel J (2008) Coupling amplified DNA from flow-sorted chromosomes to high-density SNP mapping in barley. BMC Genomics 9:294

    Article  PubMed  CAS  Google Scholar 

  • Singh R, Dhaliwal HS, Gill KS (1992) Diversity for leaf rust resistance in Triticum durum germplasm. Cer Rus Pow Mil Bull 20:62–67

    Google Scholar 

  • Singh RP, Huerta-Espino J, Pfeiffer W, Figueroa-Lopez P (2004) Occurrence and impact of a new leaf rust race on durum wheat in Northwestern Mexico from 2001 to 2003. Plant Dis 88:703–708

    Article  Google Scholar 

  • Singh B, Bansal UK, Forrest KL, Hayden MJ, Hare RA, Bariana HS (2010) Inheritance and chromosome location of leaf rust resistance in durum wheat cultivar Wollaroi 175:351–355

    Google Scholar 

  • Sobrino B, Brióna M, Carracedoa A (2005) SNPs in forensic genetics: a review on SNP typing methodologies. Forensic Sci Int 154:181–194

    Article  PubMed  CAS  Google Scholar 

  • Somers DJ, Isaac P, Edwards K (2004) A high-density wheat microsatellite consensus map of bread wheat (Triticum aestivum L.). Theor Appl Genet 109:1105–1114

    Article  PubMed  CAS  Google Scholar 

  • Somyong S, Munkvold JD, Tanaka J, Benscher D, Sorrells ME (2011) Comparative genetic analysis of wheat seed dormancy QTL with rice and Brachypodium identifies candidate genes for ABA perception and calcium signaling. Funct Integr Genomics 11:479–490

    Article  PubMed  CAS  Google Scholar 

  • Sorrells ME, La Rota M, Bermudez-Kandianis CE, Greene RA, Kantety R, Munkvold JD, Miftahudin Mahmoud A, Ma X, Gustafson PJ, Qi LL, Echalier B, Gill BS, Matthews DE, Lazo GR, Chao S, Anderson OD, Edwards H, Linkiewicz AM, Dubcovsky J, Akhunov ED, Dvorak J, Zhang D, Nguyen HT, Peng J, Lapitan NL, Gonzalez-Hernandez JL, Anderson JA, Hossain K, Kalavacharla V, Kianian SF, Choi DW, Close TJ, Dilbirligi M, Gill KS, Steber C, Walker-Simmons MK, McGuire PE, Qualset CO (2003) Comparative DNA sequence analysis of wheat and rice genomes. Genome Res 13:1818–1827

    PubMed  CAS  Google Scholar 

  • Spielmeyer W, Huang L, Bariana H, Laroche A, Gill BS, Lugudah ES (2000) NBS-LRR sequence family is associated with leaf and stripe rust resistance on the end of homoeologous chromosome group 1S of wheat. Theor Appl Genet 101:1139–1144

    Article  CAS  Google Scholar 

  • Temel A, Senturk-Afirat F, Ertugrul A, Yumurtaci A, Aydin Y, Talas-Ogras T, Gozukirmizi N, Bolat N, Yorgancilar O, Belen S, Yildirim M, Cakmak M, Ozdemir E, Cetin L, Mert Z, Sipahi H, Albustan S, Akan K, Dusunceli F, Uncuoglu AA (2008) Yr10 gene polymorphism in bread wheat varieties. African J Biotechnol 7:2328–2332

    CAS  Google Scholar 

  • Terwilliger J (1995) A powerfull likelihood method for the analysis of linkage disequilibrium between trait loci and one or more polymorphic marker loci. Am J Hum Genet 56:777–787

    PubMed  CAS  Google Scholar 

  • The International Brachypodium Initiative (IBI) (2010) Genome sequencing and analysis of the model grass Brachypodium distachyon. Nature 463:763–768

    Article  CAS  Google Scholar 

  • Varshney RK, Tuberosa R (2007) Genomics-assisted crop improvement: an overview. In: Varshney RK, Tuberosa R (eds) Genomics assisted crop improvement, vol 1., Genomics approaches and platformsSpringer, Dordrecht, pp 1–12

    Chapter  Google Scholar 

  • Vietmeyer N (2011) Our daily bread; the essential Norman Borlaug. Bracing Books, Lorton

    Google Scholar 

  • Vorrips RE (2002) MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered 93:77–78

    Article  Google Scholar 

  • Wallace RB, Shaffer J, Murphy RF, Bonner J, Hirose T, Itakura K (1979) Hybridization of synthetic oligodeoxyribonucleotides to Phi-X 174 DNA: the effect of single base pair mismatch. Nucleic Acids Res 6:3543–3558

    Article  PubMed  CAS  Google Scholar 

  • Weng J, Liu X, Wang Z, Wang J, Zhang L, Hao Z, Xie C, Li M, Zhang D, Bai L, Liu C, Zhang S, Li X (2012) Molecular mapping of the major resistance quantitative trait locus qHS2.09 with simple sequence repeat and single nucleotide polymorphism markers in maize. Genet Resist 102:692–699

    CAS  Google Scholar 

  • Wicker T, Yahiaoui N, Keller B (2007) Contrasting rates of evolution in Pm3 loci from three wheat species and rice. Genet 177:1207–1216

    Article  CAS  Google Scholar 

  • Winfield MO, Wilkinson PA, Allen AM, Barker GL, Coghill JA, Burridge A, Hall A, Brenchley RC, D’Amore R, Hall N, Bevan MW, Richmond T, Gerhardt DJ, Jeddeloh JA, Edwards KJ (2012) Targeted re-sequencing of the allohexaploid wheat exome. Plant Biotechnol J 10:733–742

    Article  PubMed  CAS  Google Scholar 

  • Xue S, Zhang Z, Lin F, Kong Z, Cao Y, Li C, Yi H, Mei M, Zhu H, Wu J, Xu H, Zhao D, Tian D, Zhang C, Ma Z (2008) A high-density intervarietal map of the wheat genome enriched with markers derived from expressed sequence tags. Theor Appl Genet 117:181–189

    Article  PubMed  CAS  Google Scholar 

  • Xue F, Wang C, Li C, Duan X, Zhou Y, Zhao N, Wang Y, Ji W (2012) Molecular mapping of a powdery mildew resistance gene in common wheat landrace Baihulu and its allelism with Pm24. Theor Appl Genet. doi:10.1007/s00122-012-1923-1926

    Google Scholar 

  • You FM, Huo N, Gu YQ, Lazo GR, Dvorak J, Anderson OD (2009) ConservedPrimers 2.0: a high-throughput pipeline for comparative genome referenced intron-flanking PCR primer design and its application in wheat SNP discovery. BMC Bioinf 10:331

    Article  CAS  Google Scholar 

  • Zhang W, Dubcovsky J (2011) Association between allelic variation at the Phytoene synthase 1 gene and yellow pigment content in the wheat grain. Theor Appl Genet 116:635–645

    Article  CAS  Google Scholar 

  • Zhang W, Chao S, Manthey F, Chicaiza O, Brevis JC, Echenique V, Dubcovsky J (2008) QTL analysis of pasta quality using a composite microsatellite and SNP map of durum wheat. Theor Appl Genet 117:1361–1377

    Article  PubMed  CAS  Google Scholar 

  • Zhang H, Guan H, Li J, Zhu J, Xie C, Zhou Y, Duan X, Yang T, Sun Q, Liu Z (2010) Genetic and comparative genomics mapping reveals that a powdery mildew resistance gene Ml3D232 originating from wild emmer co-segregates with an NBS-LRR analog in common wheat (Triticum aestivum L.). Theor Appl Genet 121:1613–1621

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Research supported by the “AGER-Agroalimentare e Ricerca” foundation, “From Seed to Pasta” project, and by Emilia-Romagna Region (Laboratorio SITEIA, Misura 4 “Sviluppo di rete”, Azione A). The Interdepartmental Centre for Biotechnology (University of Bologna, Italy) is gratefully acknowledged. The authors thank S. Corneti and S. Stefanelli for technical assistance in molecular genotyping and phenotyping, J. Číhalíková, R. Šperková, and Z. Dubská in chromosome sorting and preparation of amplified chromosomal DNA. F.M. Bassi was supported by program “Master and Back” of the Regione Autonoma della Sardegna, and by Monsanto Beachell-Borlaug International Scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Maccaferri.

Additional information

Communicated by P. Langridge.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Terracciano, I., Maccaferri, M., Bassi, F. et al. Development of COS-SNP and HRM markers for high-throughput and reliable haplotype-based detection of Lr14a in durum wheat (Triticum durum Desf.). Theor Appl Genet 126, 1077–1101 (2013). https://doi.org/10.1007/s00122-012-2038-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-012-2038-9

Keywords

Navigation