Skip to main content

Advertisement

Log in

Targeted discovery of quantitative trait loci for resistance to northern leaf blight and other diseases of maize

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

To capture diverse alleles at a set of loci associated with disease resistance in maize, heterogeneous inbred family (HIF) analysis was applied for targeted QTL mapping and near-isogenic line (NIL) development. Tropical maize lines CML52 and DK888 were chosen as donors of alleles based on their known resistance to multiple diseases. Chromosomal regions (“bins”; n = 39) associated with multiple disease resistance (MDR) were targeted based on a consensus map of disease QTLs in maize. We generated HIFs segregating for the targeted loci but isogenic at ~97% of the genome. To test the hypothesis that CML52 and DK888 alleles at MDR hotspots condition broad-spectrum resistance, HIFs and derived NILs were tested for resistance to northern leaf blight (NLB), southern leaf blight (SLB), gray leaf spot (GLS), anthracnose leaf blight (ALB), anthracnose stalk rot (ASR), common rust, common smut, and Stewart’s wilt. Four NLB QTLs, two ASR QTLs, and one Stewart’s wilt QTL were identified. In parallel, a population of 196 recombinant inbred lines (RILs) derived from B73 × CML52 was evaluated for resistance to NLB, GLS, SLB, and ASR. The QTLs mapped (four for NLB, five for SLB, two for GLS, and two for ASR) mostly corresponded to those found using the NILs. Combining HIF- and RIL-based analyses, we discovered two disease QTLs at which CML52 alleles were favorable for more than one disease. A QTL in bin 1.06–1.07 conferred resistance to NLB and Stewart’s wilt, and a QTL in 6.05 conferred resistance to NLB and ASR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Alvarez S, Goodger JQD, Marsh EL, Chen S, Asirvatham VS, Schachtman DP (2006) Characterization of the maize xylem sap proteome. J Proteome Res 5:963–972

    Article  PubMed  CAS  Google Scholar 

  • Balasubramanian S, Schwartz C, Singh A, Warthmann N, Kim MC, Maloof JN, Loudet O, Trainer GT, Dabi T, Borevitz JO, Chory J, Weigel D (2009) QTL mapping in new Arabidopsis thaliana advanced intercross-recombinant inbred lines. PLoS One 4:e4318

    Article  PubMed  Google Scholar 

  • Balint-Kurti PJ, Blanco M, Millard M, Duvick S, Holland J, Clements M, Holley R, Carson ML, Goodman MM (2006) Registration of 20 GEM maize breeding germplasm lines adapted to the southern USA. Crop Sci 46:996–998

    Article  Google Scholar 

  • Borevitz JO, Chory J (2004) Genomics tools for QTL analysis and gene discovery. Curr Opin Plant Biol 7:132–136

    Article  PubMed  CAS  Google Scholar 

  • Broglie KE, Butler KH, Butruille MG, da Silva Conceicao A, Frey TJ, Hawk JA, Jaqueth JS, Jones ES, Multani DS, Wolters PJCC, E.I. du Pont de Nemours and Company, Pioneer Hi-Bred International, Inc., University of Delaware United States (2006) Polynucleotides and methods for making plants resistant to fungal pathogens. United States Patent 20060223102

  • Bubeck DM, Goodman MM, Beavis WD, Grant D (1993) Quantitative trait loci controlling resistance to gray leaf spot in maize. Crop Sci 33:838–847

    Article  Google Scholar 

  • Buckler ES, Holland JB, Bradbury PJ, Acharya CB, Brown PJ, Browne C, Ersoz E, Flint-Garcia S, Garcia A, Glaubitz JC, Goodman MM, Harjes C, Guill K, Kroon DE, Larsson S, Lepak NK, Li H, Mitchell SE, Pressoir G, Peiffer JA, Rosas MO, Rocheford TR, Cinta Romay M, Romero S, Salvo S, Sanchez Villeda H, da Silva HS, Sun Q, Tian F, Upadyayula N, Ware D, Yates H, Yu J, Zhang Z, Kresovich S, McMullen MD (2009) The genetic architecture of maize flowering time. Science 325:714–718

    Article  PubMed  CAS  Google Scholar 

  • Buschges R, Hollricher K, Panstruga R, Simons G, Wolter M, Frijters A, Van Daelen R, Van der Lee T, Diergarde P, Groenendijk J, Topsch S, Vos P, Salamini F, Schulze-Lefert P (1997) The barley Mlo gene: a novel control element of plant pathogen resistance. Cell 88:695–705

    Article  PubMed  CAS  Google Scholar 

  • Cao H, Li X, Dong X (1998) Generation of broad-spectrum disease resistance by overexpression of an essential regulatory gene in systemic acquired resistance. PNAS 95:6531–6536

    Article  PubMed  CAS  Google Scholar 

  • Carson ML (1998) Aggressiveness and perennation of isolates of Cochliobolus heterostrophus from North Carolina. Plant Dis 82:1043–1047

    Article  Google Scholar 

  • Carson ML (1999) Helminthosporium leaf spots and blights. In: White DG (ed) Compendium of corn diseases, 3rd edn. The American Phytopathology Society, St. Paul, MN, pp 15–24

    Google Scholar 

  • Carson ML, Stuber CW, Senior ML (2004) Identification and mapping of quantitative trait loci conditioning resistance to southern leaf blight of maize caused by Cochliobolus heterostrophus race O. Phytopathology 94:862–867

    Article  PubMed  CAS  Google Scholar 

  • Chung C, Jamann T, Longfellow J, Nelson R (2010a) Characterization and fine-mapping of a resistance locus for northern leaf blight in maize bin 8.06. Theor Appl Genet 121:205–227

    Article  PubMed  CAS  Google Scholar 

  • Chung C, Longfellow J, Walsh E, Kerdieh Z, Van Esbroeck G, Balint-Kurti PRN (2010b) Resistance loci affecting distinct stages of fungal pathogenesis: use of introgression lines for QTL mapping and characterization in the maize—Setosphaeria turcica pathosystem. BMC Plant Biol 10:103

    Article  PubMed  Google Scholar 

  • Dickinson MJ, Jones DA, Jones JDG (1993) Close linkage between the Cf-2/Cf-5 and Mi resistance loci in tomato. Mol Plant Microbe Interact 6:341–347

    Article  PubMed  CAS  Google Scholar 

  • Dixon MS, Hatzixanthis K, Jones DA, Harrison K, Jones JDG (1998) The tomato Cf-5 disease resistance gene and six homologs show pronounced allelic variation in leucine-rich repeat copy number. Plant Cell 10:1915–1925

    Article  PubMed  CAS  Google Scholar 

  • Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11–15

    Google Scholar 

  • Edreva A (2005) Pathogenesis-related proteins: research progress in the last 15 years. Gen Appl Plant Physiol 31:105–124

    CAS  Google Scholar 

  • Ekasingh B, Gypmantasiri P, Thong-Ngam K (2001) Impact of maize breeding research in Thailand: public- and private-sector collaboration. In: Gerpacio RV (ed) Impact of public- and private-sector maize breeding research in Asia, 1966–1997/98. International Maize and Wheat Improvement Center (CIMMYT), pp 95–104

  • Eshed Y, Zamir D (1995) An introgression line population of Lycopersicon pennellii in the cultivated tomato enables the identification and fine mapping of yield-associated QTL. Genetics 141:1147–1162

    PubMed  CAS  Google Scholar 

  • Faris JD, Li WL, Liu DJ, Chen PD, Gill BS (1999) Candidate gene analysis of quantitative disease resistance in wheat. Theor Appl Genet 98:219–225

    Article  CAS  Google Scholar 

  • Flint-Garcia SA, Darrah LL, McMullen MD, Hibbard BE (2003) Phenotypic versus marker-assisted selection for stalk strength and second-generation European corn borer resistance in maize. Theor Appl Genet 107:1331–1336

    Article  PubMed  CAS  Google Scholar 

  • Freymark PJ, Lee M, Woodman WL, Martinson CA (1993) Quantitative and qualitative trait loci affecting host-plant response to Exserohilum turcicum in maize (Zea mays L.). Theor Appl Genet 87:537–544

    Article  CAS  Google Scholar 

  • Goodman MM (2005) Broadening the U.S. maize germplasm base. Maydica 50:203–214

    Google Scholar 

  • Hilaire E, Young SA, Willard LH, McGee JD, Sweat T, Chittoor JM, Guikema JA, Leach JE (2001) Vascular defense responses in rice: peroxidase accumulation in xylem parenchyma cells and xylem wall thickening. Mol Plant Microbe Interact 14:1411–1419

    Article  PubMed  CAS  Google Scholar 

  • Jo Y-K, Barker R, Pfender W, Warnke S, Sim S-C, Jung G (2008) Comparative analysis of multiple disease resistance in ryegrass and cereal crops. Theor Appl Genet 117:531–543

    Article  PubMed  CAS  Google Scholar 

  • Joehanes R, Nelson JC (2008) QGene 4.0, an extensible Java QTL-analysis platform. Bioinformatics 24:2788–2789

    Article  PubMed  CAS  Google Scholar 

  • Jones JDG, Dangl JL (2006) The plant immune system. Nature 444:323–329

    Article  PubMed  CAS  Google Scholar 

  • Jung M, Weldekidan T, Schaff D, Paterson A, Tingey S, Hawk J (1994) Generation-means analysis and quantitative trait locus mapping of anthracnose stalk rot genes in maize. TAG 89:413–418

    CAS  Google Scholar 

  • Kaeppler SM (1997) Quantitative trait locus mapping using sets of near-isogenic lines: relative power comparisons and technical considerations. Theor Appl Genet 95:384–392

    Article  Google Scholar 

  • Kanazin V, Marek LF, Shoemaker RC (1996) Resistance gene analogs are conserved and clustered in soybean. PNAS 93:11746–11750

    Article  PubMed  CAS  Google Scholar 

  • Keller NP, Bergstrom GC (1988) Development predisposition of maize to anthracnose stalk rot. Plant Dis 72:977–980

    Article  Google Scholar 

  • Keurentjes JJB, Bentsink L, Alonso-Blanco C, Hanhart CJ, Vries HB-D, Effgen S, Vreugdenhil D, Koornneef M (2007) Development of a near-isogenic line population of Arabidopsis thaliana and comparison of mapping power with a recombinant inbred line population. Genetics 175:891–905

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi S, Araki E, Osaki M, Khush GS, Fukuta Y (2006) Localization, validation and characterization of plant-type QTLs on chromosomes 4 and 6 in rice (Oryza sativa L.). Field Crop Res 96:106–112

    Article  Google Scholar 

  • Kraja A, Dudley JW, White DG (2000) Identification of tropical and temperate maize populations having favorable alleles for disease resistance. Crop Sci 40:948–954

    Article  Google Scholar 

  • Krattinger SG, Lagudah ES, Spielmeyer W, Singh RP, Huerta-Espino J, McFadden H, Bossolini E, Selter LL, Keller B (2009) A putative ABC transporter confers durable resistance to multiple fungal pathogens in wheat. Science 323:1360–1363

    Article  PubMed  CAS  Google Scholar 

  • Lee J, Hardin B (1997) GEM searches for treasures in exotic maize. Agric Res 45:4–6

    Google Scholar 

  • Lee M, Sharopova N, Beavis WD, Grant D, Katt M, Blair D, Hallauer A (2002) Expanding the genetic map of maize with the intermated B73 × Mo17 (IBM) population. Plant Mol Biol 48:453–461

    Article  PubMed  CAS  Google Scholar 

  • Leonard KJ, Thompson DL (1976) Effects of temperature and host maturity on lesion development of Colletotrichum graminicola on corn. Phytopathology 66:635–639

    Article  Google Scholar 

  • Li WL, Faris JD, Chittoor JM, Leach JE, Hulbert SH, Liu DJ, Chen PD, Gill BS (1999) Genomic mapping of defense response genes in wheat. Theor Appl Genet 98:226–233

    Article  CAS  Google Scholar 

  • Lim SM, White DG (1978) Estimates of heterosis and combining ability for resistance of maize to Colletotrichum graminicola. Phytopathology 68:1336–1342

    Article  Google Scholar 

  • Lopez CE, Acosta IF, Jara C, Pedraza F, Gaitan-Solis E, Gallego G, Beebe S, Tohme J (2003) Identifying resistance gene analogs associated with resistances to different pathogens in common bean. Phytopathology 93:88–95

    Article  PubMed  CAS  Google Scholar 

  • Loudet O, Gaudon V, Trubuil A, Daniel-Vedele F (2005) Quantitative trait loci controlling root growth and architecture in Arabidopsis thaliana confirmed by heterogeneous inbred family. Theor Appl Genet 110:742–753

    Article  PubMed  CAS  Google Scholar 

  • Mang HG, Laluk KA, Parsons EP, Kosma DK, Cooper BR, Park HC, AbuQamar S, Boccongelli C, Miyazaki S, Consiglio F, Chilosi G, Bohnert HJ, Bressan RA, Mengiste T, Jenks MA (2009) The Arabidopsis RESURRECTION1 gene regulates a novel antagonistic interaction in plant defense to biotrophs and necrotrophs. Plant Physiol 151:290–305

    Article  PubMed  CAS  Google Scholar 

  • McMullen MD, Kresovich S, Villeda HS, Bradbury P, Li H, Sun Q, Flint-Garcia S, Thornsberry J, Acharya C, Bottoms C, Brown P, Browne C, Eller M, Guill K, Harjes C, Kroon D, Lepak N, Mitchell SE, Peterson B, Pressoir G, Romero S, Rosas MO, Salvo S, Yates H, Hanson M, Jones E, Smith S, Glaubitz JC, Goodman M, Ware D, Holland JB, Buckler ES (2009) Genetic properties of the maize nested association mapping population. Science 325:737–740

    Article  PubMed  CAS  Google Scholar 

  • Mideros SX, Windham GL, Williams WP, Nelson RJ (2009) Aspergillus flavus biomass in maize estimated by quantitative real-time polymerase chain reaction is strongly correlated with aflatoxin concentration. Plant Dis 93:1163–1170

    Google Scholar 

  • Milligan SB, Bodeau J, Yaghoobi J, Kaloshian I, Zabel P, Williamson VM (1998) The root knot nematode resistance gene Mi from tomato is a member of the leucine zipper, nucleotide binding, leucine-rich repeat family of plant genes. Plant Cell 10:1307–1319

    Article  PubMed  CAS  Google Scholar 

  • Ming R, Brewbaker JL, Moon HG, Musket TA, Holley RN, Pataky JK, McMullen MD (1999) Identification of RFLP makers linked to a major gene, sw1, conferring resistance to Stewart’s wilt in maize. Maydica 44:319–323

    Google Scholar 

  • Muimba-Kankolongo A, Bergstrom GC (1990) Transitory wound predisposition of maize to Anthracnose stalk rot. Can J Plant Pathol 12:1–10

    Article  Google Scholar 

  • Njiti VN, Doubler TW, Suttner RJ, Gray LE, Gibson PT, Lightfoot DA (1998) Resistance to soybean sudden death syndrome and root colonization by Fusarium solani f. sp. glycine in near-isogenic lines. Crop Sci 38:472–477

    Article  Google Scholar 

  • Pataky JK, Bohn MO, Lutz JD, Richter PM (2008) Selection for quantitative trait loci associated with resistance to Stewart’s wilt in sweet corn. Phytopathology 98:469–474

    Article  PubMed  CAS  Google Scholar 

  • Poland JA, Nelson RJ (2011) In the eye of the beholder: the effect of rater variability and different rating scales on QTL mapping. Phytopathology 101:290–298

    Article  PubMed  Google Scholar 

  • Poland JA, Balint-Kurti PJ, Wisser RJ, Pratt RC, Nelson RJ (2009) Shades of gray: the world of quantitative disease resistance. Trends Plant Sci 14:21–29

    Article  PubMed  CAS  Google Scholar 

  • Pumphrey MO, Bernardo R, Anderson JA (2007) Validating the Fhb1 QTL for Fusarium head blight resistance in near-isogenic wheat lines developed from breeding populations. Crop Sci 47:200–206

    Article  CAS  Google Scholar 

  • Qiu F, Wang H, Chen J, Zhuang J, Hei L, Cheng S, Wu J (2006) A rapid DNA mini-prep method for large-scale rice mutant screening. Rice Sci 13:299–302

    Google Scholar 

  • Ramalingam J, Cruz CMV, Kukreja K, Chittoor JM, Wu JL, Lee SW, Baraoidan M, George ML, Cohen MB, Hulbert SH, Leach JE, Leung H (2003) Candidate defense genes from rice, barley, and maize and their association with qualitative and quantitative resistance in rice. Mol Plant Microbe Interact 16:14–24

    Article  PubMed  CAS  Google Scholar 

  • Ribaut J-M, Ragot M (2007) Marker-assisted selection to improve drought adaptation in maize: the backcross approach, perspectives, limitations, and alternatives. J Exp Bot 58:351–360

    Article  PubMed  CAS  Google Scholar 

  • Robertson DS (1989) Understanding the relationship between qualitative and quantitative genetics. In: Helentjaris T, Burr VAB (eds) Development and application of molecular markers to problems in plant genetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp 81–87

    Google Scholar 

  • Saghai Maroff MA, Van Scoyoc SW, Yu YG, Stromberg EL (1993) Gray leaf spot disease of maize: rating methodology and inbred line evaluation. Plant Dis 77:583–587

    Article  Google Scholar 

  • Schechert AW, Welz HG, Geiger HH (1999) QTL for resistance to Setosphaeria turcica in tropical African maize. Crop Sci 39:514–523

    Article  Google Scholar 

  • Schuelke M (2000) An economic method for the fluorescent labeling of PCR fragments. Nat Biotechnol 18:233–234

    Article  PubMed  CAS  Google Scholar 

  • Simcox KD, Bennetzen JL (1993) The use of molecular markers to study Setosphaeria turcica resistance in maize. Phytopathology 83:1326–1330

    Article  CAS  Google Scholar 

  • Szalma SJ, Buckler ES, Snook ME, McMullen MD (2005) Association analysis of candidate genes for maysin and chlorogenic acid accumulation in maize silks. Theor Appl Genet 110:1324–1333

    Article  PubMed  CAS  Google Scholar 

  • Szalma SJ, Hostert BM, LeDeaux JR, Stuber CW, Holland JB (2007) QTL mapping with near-isogenic lines in maize. Theor Appl Genet 114:1211–1228

    Article  PubMed  CAS  Google Scholar 

  • Tuinstra MR, Ejeta G, Goldsbrough PB (1997) Heterogenous inbred family (HIF) analysis: a method for developing near-isogenic lines that differ at quantitative trait loci. Theor Appl Genet 95:1005–1011

    Article  CAS  Google Scholar 

  • van Dam J, Levin I, Struik PC, Levy D (2003) Identification of epistatic interaction affecting glycoalkaloid content in tubers of tetraploid potato (Solanum tuberosum L.). Euphytica 134:353–360

    Article  Google Scholar 

  • Venard C, Vaillancourt L (2007a) Colonization of fiber cells by Colletotrichum graminicola in wounded maize stalks. Phytopathology 97:438–447

    Article  PubMed  CAS  Google Scholar 

  • Venard C, Vaillancourt L (2007b) Penetration and colonization of unwounded maize tissues by the maize anthracnose pathogen Colletotrichum graminicola and the related nonpathogen C. sublineolum. Mycologia 99:368–377

    Article  PubMed  CAS  Google Scholar 

  • Wang S, Xiao X (2002) Isolation and linkage mapping of disease-resistance-like sequences from various rice cultivars, containing different recognition specificities. Plant Breed 121:203–209

    Article  CAS  Google Scholar 

  • Wang G-X, Chen Y, Zhao J-R, Li L, Korban SS, Wang F-G, Li J-S, Dai J-R, Xu M-L (2007a) Mapping of defense response gene homologs and their association with resistance loci in maize. J Integr Plant Biol 49:1580–1598

    Article  CAS  Google Scholar 

  • Wang W, Devoto A, Turner JG, Xiao S (2007b) Expression of the membrane-associated resistance protein RPW8 enhances basal defense against biotrophic pathogens. Mol Plant Microbe Interact 20:966–976

    Article  PubMed  CAS  Google Scholar 

  • Weldekidan T, Hawk JA (1993) Inheritance of anthracnose stalk rot resistance in maize. Maydica 38:189–192

    Google Scholar 

  • Welz HG, Geiger HH (2000) Genes for resistance to northern corn leaf blight in diverse maize populations. Plant Breed 119:1–14

    Article  CAS  Google Scholar 

  • Welz HG, Schechert AW, Geiger HH (1999a) Dynamic gene action at QTLs for resistance to Setosphaeria turcica in maize. Theor Appl Genet 98:1036–1045

    Article  CAS  Google Scholar 

  • Welz HG, Xia XC, Bassetti P, Melchinger AE, Luebberstedt T (1999b) QTLs for resistance to Setosphaeria turcica in an early maturing Dent × Flint maize population. Theor Appl Genet 99:649–655

    Article  Google Scholar 

  • Wilcoxson RD, Atif AH, Skovmand B (1974) Slow rusting of wheat varieties in the field correlated with stem rust severity on detached leaves in the greenhouse. Plant Dis Rep 58:1085–1087

    Google Scholar 

  • Williams KJ (2003) The molecular genetics of disease resistance in barley. Aust J Agric Res 54:1065–1079

    Article  CAS  Google Scholar 

  • Wisser RJ, Sun Q, Hulbert SH, Kresovich S, Nelson RJ (2005) Identification and characterization of regions of the rice genome associated with broad-spectrum, quantitative disease resistance. Genetics 169:2277–2293

    Article  PubMed  CAS  Google Scholar 

  • Wisser RJ, Balint-Kurti PJ, Nelson RJ (2006) The genetic architecture of disease resistance in maize: a synthesis of published studies. Phytopathology 96:120–129

    Article  PubMed  CAS  Google Scholar 

  • Wisser RJ, Murray SC, Kolkman JM, Ceballos H, Nelson RJ (2008) Selection mapping of loci for quantitative disease resistance in a diverse maize population. Genetics 180:583–599

    Article  PubMed  Google Scholar 

  • Wisser RJ, Kolkman JM, Patzoldt ME, Holland JB, Yu J, Krakowsky M, Nelson RJ, Balint-Kurti PJ (2011) Multivariate analysis of maize disease resistances suggests a pleiotropic genetic basis and implicates a GST gene. PNAS. doi:10.1073/pnas.1011739108

  • Xu S (2003) Estimating polygenic effects using markers of the entire genome. Genetics 163:789–801

    PubMed  CAS  Google Scholar 

  • Xu Y, Crouch JH (2008) Marker-assisted selection in plant breeding: from publications to practice. Crop Sci 48:391–407

    Article  Google Scholar 

  • Young ND (1996) QTL mapping and quantitative disease resistance in plants. Annu Rev Phytopathol 34:479–501

    Article  PubMed  CAS  Google Scholar 

  • Yousef GG, Juvik JA (2001) Comparison of phenotypic and marker-assisted selection for quantitative traits in sweet corn. Crop Sci 41:645–655

    Article  Google Scholar 

  • Yu J, Holland JB, McMullen MD, Buckler ES (2008) Genetic design and statistical power of nested association mapping in maize. Genetics 178:539–551

    Article  PubMed  Google Scholar 

  • Yun SJ, Gyenis L, Hayes PM, Matus I, Smith KP, Steffenson BJ, Muehlbauer GJ (2005) Quantitative trait loci for multiple disease resistance in wild barley. Crop Sci 45:2563–2572

    Article  CAS  Google Scholar 

  • Zaitlin D, DeMars SJ, Gupta M (1992) Linkage of a second gene for NCLB resistance to molecular markers in maize. Maize Genet Coop Newslett 66:69–70

    Google Scholar 

  • Zhang LP, Khan A, Nino-Liu D, Foolad MR (2002) A molecular linkage map of tomato displaying chromosomal locations of resistance gene analogs based on a Lycopersicon esculentum × Lycopersicon hirsutum cross. Genome 45:133–146

    Article  PubMed  CAS  Google Scholar 

  • Zuber MS, Ainsworth TC, Blanco MH, Darrah LL (1981) Effect of anthracnose leaf blight on stalk rind strength and yield in F1 single crosses in maize. Plant Dis 65:719–722

    Article  Google Scholar 

Download references

Acknowledgments

We thank Randall Wisser for integrating the markers used in the HIF analysis onto the disease QTL consensus map, Erik Stromberg for his help with field trials in Virginia, Kent Loeffler for photography, and Pioneer Hi-Bred International Inc. for the supply of sorghum grains used in production of inoculum. Seed for the F5 families and the RIL population from B73 × CML52 were generously provided by Edward Buckler. Seed for the F6 families from S11 × DK888 were kindly provided by Major Goodman. We appreciate help from Oliver Ott, Kristen Kennedy, Zura Kerdieh, and Donna Stephens regarding research aspects. The work was funded by The CGIAR Generation Challenge Program, The McKnight Foundation, USDA-ARS, The Bill & Melinda Gates Foundation, and Ministry of Education, Taiwan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rebecca Nelson.

Additional information

Communicated by M. Bohn.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chung, CL., Poland, J., Kump, K. et al. Targeted discovery of quantitative trait loci for resistance to northern leaf blight and other diseases of maize. Theor Appl Genet 123, 307–326 (2011). https://doi.org/10.1007/s00122-011-1585-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-011-1585-9

Keywords

Navigation