Skip to main content

Advertisement

Log in

Deleterious amino acid polymorphisms in Arabidopsis thaliana and rice

Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Plant genetic diversity has been mainly investigated with neutral markers, but large-scale DNA sequencing projects now enable the identification and analysis of different classes of genetic polymorphisms, such as non-synonymous single nucleotide polymorphisms (nsSNPs) in protein coding sequences. Using the SIFT and MAPP programs to predict whether nsSNPs are tolerated (i.e., effectively neutral) or deleterious for protein function, genome-wide nsSNP data from Arabidopsis thaliana and rice were analyzed. In both species, about 20% of polymorphic sites with nsSNPs were classified as deleterious; they segregate at lower allele frequencies than tolerated nsSNPs due to purifying selection. Furthermore, A. thaliana accessions from marginal populations show a higher relative proportion of deleterious nsSNPs, which likely reflects differential selection or demographic effects in subpopulations. To evaluate the sensitivity of predictions, genes from model and crop plants with known functional effects of nsSNPs were inferred with the algorithms. The programs predicted about 70% of nsSNPs correctly as tolerated or deleterious, i.e., as having a functional effect. Forward-in-time simulations of bottleneck and domestication models indicated a high power to detect demographic effects on nsSNP frequencies in sufficiently large datasets. The results indicate that nsSNPs are useful markers for analyzing genetic diversity in plant genetic resources and breeding populations to infer natural/artificial selection and genetic drift.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  • Abbott R, Gomes M (1989) Population structure and outcrossing rate of Arabidopsis thaliana (L) Heynh. Heredity 62:411–418

    Article  Google Scholar 

  • Albar L, Bangratz-Reyser M, Hebrard E, Ndjiondjop M, Jones M, Ghesquiere A (2006) Mutations in the eIF(iso)4G translation initiation factor confer high resistance of rice to Rice yellow mottle virus. Plant J 47:417–426

    Article  CAS  PubMed  Google Scholar 

  • Alonso-Blanco C, de Vries HB, Hanhart CJ, Koornneef M (1999) Natural allelic variation at seed size loci in relation to other life history traits of Arabidopsis thaliana. Proc Natl Acad Sci USA 96(8):4710–4717

    Article  CAS  PubMed  Google Scholar 

  • Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25(17):3389–3402

    Article  CAS  PubMed  Google Scholar 

  • Birney E, Clamp M, Durbin R (2004) Genewise and genomewise. Genome Res 14(5):988–995

    Article  CAS  PubMed  Google Scholar 

  • Boeckmann B, Bairoch A, Apweiler R, Blatter MC, Estreicher A, Gasteiger E, Martin MJ, Michoud K, O’Donovan C, Phan I, Pilbout S, Schneider M (2003) The SWISS-PROT protein knowledgebase and its supplement TrEMBL in 2003. Nucleic Acids Res 31(1):365–370

    Article  CAS  PubMed  Google Scholar 

  • Brock M, Tiffin P, Weinig C (2007) Sequence diversity and haplotype associations with phenotypic responses to crowding: GIGANTEA affects fruit set in Arabidopsis thaliana. Mol Ecol 16(14):3050–3062

    Article  CAS  PubMed  Google Scholar 

  • Caicedo AL, Williamson SH, Hernandez RD, Boyko A, Fledel-Alon A, York TL, Polato NR, Olsen KM, Nielsen R, McCouch SR, Bustamante CD, Purugganan MD (2007) Genome-wide patterns of nucleotide polymorphism in domesticated rice. PLoS Genet 3(9):e163

    Article  Google Scholar 

  • Cartegni L, Chew S, Krainer A (2002) Listening to silence and understanding nonsense: exonic mutations that affect splicing. Nat Rev Genet 3(4):285–298

    Article  CAS  PubMed  Google Scholar 

  • Charlesworth B, Morgan MT, Charlesworth D (1993) The effect of deleterious mutations on neutral molecular variation. Genetics 134(4):1289–1303

    CAS  PubMed  Google Scholar 

  • Chisholm ST, Mahajan SK, Whitham SA, Yamamoto ML, Carrington JC (2000) Cloning of the Arabidopsis RTM1 gene, which controls restriction of long-distance movement of tobacco etch virus. Proc Natl Acad Sci USA 97(1):489–494

    Article  CAS  PubMed  Google Scholar 

  • Clark RM, Schweikert G, Toomajian C, Ossowski S, Zeller G, Shinn P, Warthmann N, Hu TT, Fu G, Hinds DA, Chen H, Frazer KA, Huson DH, Scholkopf B, Nordborg M, Ratsch G, Ecker JR, Weigel D (2007) Common sequence polymorphisms shaping genetic diversity in Arabidopsis thaliana. Science 317(5836):338–342

    Article  CAS  PubMed  Google Scholar 

  • Cronin JK, Bundock PC, Henry RJ, Nevo E (2007) Adaptive climatic molecular evolution in wild barley at the Isa defense locus. Proc Natl Acad Sci 104(8):2773–2778

    Article  CAS  PubMed  Google Scholar 

  • El-Assal S, Alonso-Blanco C, Peeters A, Raz V, Koornneef M (2001) A QTL for flowering time in Arabidopsis reveals a novel allele of CRY2. Nat Genet 29:435–440

    Article  CAS  Google Scholar 

  • Filiault DL, Wessinger CA, Dinneny JR, Lutes J, Borevitz JO, Weigel D, Chory J, Maloof JN (2008) Amino acid polymorphisms in Arabidopsis phytochrome B cause differential responses to light. Proc Natl Acad Sci 105(8):3157–3162

    Article  CAS  PubMed  Google Scholar 

  • Friedman N, Ninio M, Pe’er I, Pupko T (2002) A structural EM algorithm for phylogenetic inference. J Comput Biol 9(2):331–353

    Article  CAS  PubMed  Google Scholar 

  • Fu H, Zheng Z, Dooner HK (2002) Recombination rates between adjacent genic and retrotransposon regions in maize vary by 2 orders of magnitude. Proc Natl Acad Sci USA 99(2):1082–1087

    CAS  PubMed  Google Scholar 

  • Gazzani S, Gendall AR, Lister C, Dean C (2003) Analysis of the molecular basis of flowering time variation in Arabidopsis accessions. Plant Phys 132(2):1107–1114

    Article  CAS  Google Scholar 

  • Gepts P, Papa R (2002) Evolution during domestication. In: Encyclopedia of life sciences. Wiley, Chichester. http://www.els.net/

  • Hamblin MT, Casa AM, Sun H, Murray SC, Paterson AH, Aquadro CF, Kresovich S (2006) Challenges of detecting directional selection after a bottleneck: lessons from Sorghum bicolor. Genetics 173(2):953–964

    Article  CAS  PubMed  Google Scholar 

  • Hedrick P (1998) Maintenance of genetic polymorphism: spatial selection and self-fertilization. Am Nat 152(1):145–150

    Article  CAS  PubMed  Google Scholar 

  • Hoffmann M (2002) Biogeography of Arabidopsis thaliana (L.) Heynh. (Brassicaceae). J Biogeogr 29:125–134

    Article  Google Scholar 

  • Innan H, Kim Y (2004) Pattern of polymorphism after strong artificial selection in a domestication event. Proc Natl Acad Sci USA 101(29):10,667–10,672

    Article  CAS  Google Scholar 

  • Johanson U, West J, Lister C, Michaels S, Amasino R, Dean C (2000) Molecular analysis of FRIGIDA, a major determinant of natural variation in Arabidopsis flowering time. Science 290(5490):344–347

    Article  CAS  PubMed  Google Scholar 

  • Kimura M (1962) On the probability of fixation of mutant genes in a population. Genetics 47(6):713–719

    CAS  PubMed  Google Scholar 

  • Kimura M, Crow J (1963) The measurement of effective population number. Evolution 17(3):279–288

    Article  Google Scholar 

  • Kovach M, Sweeney M, McCouch S (2007) New insights into the history of rice domestication. Trends Genet 23:578–587

    Article  CAS  PubMed  Google Scholar 

  • Lande R (1994) Risk of population extinction from fixation of new deleterious mutations. Evolution 48(5):1460–1469

    Article  Google Scholar 

  • Li C, Zhou A, Sang T (2006) Rice domestication by reducing shattering. Science 311(5769):1936–1939

    Article  CAS  PubMed  Google Scholar 

  • Li WH (1997) Molecular evolution. Sinauer Associates, Sunderland

    Google Scholar 

  • Lu J, Tang T, Tang H, Huang J, Shi S, Wu CI (2006) The accumulation of deleterious mutations in rice genomes: a hypothesis on the cost of domestication. Trends Genet 22(3):126–131

    Article  CAS  PubMed  Google Scholar 

  • Maloof JN, Borevitz JO, Dabi T, Lutes J, Nehring RB, Redfern JL, Trainer GT, Wilson JM, Asami T, Berry CC, Weigel D, Chory J (2001) Natural variation in light sensitivity of Arabidopsis. Nat Genet 29(4):441–446

    Article  CAS  PubMed  Google Scholar 

  • Morgante M, Brunner S, Pea G, Fengler K, Zuccolo A, Rafalski A (2005) Gene duplication and exon shuffling by helitron-like transposons generate intraspecies diversity in maize. Nat Genet 37(9):997–1002

    Article  CAS  PubMed  Google Scholar 

  • Ng PC, Henikoff S (2001) Predicting deleterious amino acid substitutions. Genome Res 11(5):863–874

    Article  CAS  PubMed  Google Scholar 

  • Ng PC, Henikoff S (2002) Accounting for human polymorphisms predicted to affect protein function. Genome Res 12(3):436–446

    Article  CAS  PubMed  Google Scholar 

  • Ng PC, Henikoff S (2003) SIFT: predicting amino acid changes that affect protein function. Nucl Acids Res 31(13):3812–3814

    Article  CAS  PubMed  Google Scholar 

  • Ng PC, Henikoff S (2006) Predicting the effects of amino acid substitutions on protein function. Annu Rev Genomics Hum Genet 7(1):61–80

    Article  CAS  PubMed  Google Scholar 

  • Nordborg M, Hu TT, Ishino Y, Jhaveri J, Toomajian C, Zheng H, Bakker E, Calabrese P, Gladstone J, Goyal R, Jakobsson M, Kim S, Morozov Y, Padhukasahasram B, Plagnol V, Rosenberg NA, Shah C, Wall JD, Wang J, Zhao K, Kalbfleisch T, Schulz V, Kreitman M, Bergelson J (2005) The pattern of polymorphism in Arabidopsis thaliana. PLoS Biol 3(7):e196

    Article  PubMed  Google Scholar 

  • Oka H (1988) Origin of cultivated rice. Japan Scientific Societies Press, Tokyo, Elsevier, Amsterdam

  • Pico FX, Méndez-Vigo B, Martínez-Zapater JM, Alonso-Blanco C (2008) Natural genetic variation of Arabidopsis thaliana is geographically structured in the Iberian peninsula. Genetics 180(2):1009–1021

    Article  PubMed  Google Scholar 

  • Saitoh K, Onishi K, Mikami I, Thidar K, Sano Y (2004) Allelic diversification at the C (OsC1) locus of wild and cultivated rice: nucleotide changes associated with phenotypes. Genetics 168(2):997–1007

    Article  CAS  PubMed  Google Scholar 

  • Schmid KJ, Sorensen TR, Stracke R, Torjek O, Altmann T, Mitchell-Olds T, Weisshaar B (2003) Large-scale identification and analysis of genome-wide single-nucleotide polymorphisms for mapping in Arabidopsis thaliana. Genome Res 13:1250–1257

    Article  PubMed  Google Scholar 

  • Schmid KJ, Ramos-Onsins S, Ringys-Beckstein H, Weisshaar B, Mitchell-Olds T (2005) A multilocus sequence survey in Arabidopsis thaliana reveals a genome-wide departure from a neutral model of DNA sequence polymorphism. Genetics 169(3):1601–1615

    Article  CAS  PubMed  Google Scholar 

  • Schmid KJ, Torjek O, Meyer R, Schmuths H, Hoffmann MH, Altmann T (2006) Evidence for a large-scale population structure of Arabidopsis thaliana from genome-wide single nucleotide polymorphism markers. Theor Appl Genet 112(6):1104–1114

    Article  CAS  PubMed  Google Scholar 

  • Sekine KT, Ishihara T, Hase S, Kusano T, Shah J, Takahashi H (2006) Single amino acid alterations in Arabidopsis thaliana RCY1 compromise resistance to Cucumber mosaic virus, but differentially suppress hypersensitive response-like cell death. Plant Mol Biol 62(4):669–682

    Article  CAS  PubMed  Google Scholar 

  • Simons KJ, Fellers JP, Trick HN, Zhang Z, Tai YS, Gill BS, Faris JD (2006) Molecular characterization of the major wheat domestication gene Q. Genetics 172(1):547–555

    Article  CAS  PubMed  Google Scholar 

  • Stein N, Perovic D, Kumlehn J, Pellio B, Stracke S, Streng S, Ordon F, Graner A (2005) The eukaryotic translation initiation factor 4E confers multiallelic recessive Bymovirus resistance in Hordeum vulgare (L.). Plant J 42(6):912–922

    Article  CAS  PubMed  Google Scholar 

  • Stone EA, Sidow A (2005) Physicochemical constraint violation by missense substitutions mediates impairment of protein function and disease severity. Genome Res 15(7):978–986

    Article  CAS  PubMed  Google Scholar 

  • Suckow J, Markiewicz P, Kleina L, Miller J, Kisters-Woike B, Müller-Hill B (1996) Genetic studies of the Lac Repressor XV: 4000 single amino acid substitutions and analysis of the resulting phenotypes on the basis of the protein structure. J Mol Biol 261(4):509–523

    Article  CAS  PubMed  Google Scholar 

  • Suyama M, Torrents D, Bork P (2006) PAL2NAL: robust conversion of protein sequence alignments into the corresponding codon alignments. Nucleic Acids Res 34:W609–612

    Article  CAS  PubMed  Google Scholar 

  • TIGR (2007) Rice genome annotation, vol 5. http://www.tigr.org/tdb/rice

  • Wolfe K, Li W, Sharp P (1987) Rates of nucleotide substitution vary greatly among plant mitochondrial, chloroplast, and nuclear DNAs. Proc Natl Acad Sci USA 84(24):9054

    Article  CAS  PubMed  Google Scholar 

  • Wong GKS, Yang Z, Passey DA, Kibukawa M, Paddock M, Liu CR, Bolund L, Yu J (2003) A population threshold for functional polymorphisms. Genome Res 13(8):1873–1879

    CAS  PubMed  Google Scholar 

  • Wright SI, Bi IV, Schroeder SG, Yamasaki M, Doebley JF, McMullen MD, Gaut BS (2005) The effects of artificial selection on the maize genome. Science 308(5726):1310–1314

    Article  CAS  PubMed  Google Scholar 

  • Yamasaki M, Wright S, McMullen M (2007) Genomic screening for artificial selection during domestication and improvement in maize. Ann Bot 100(5):967

    Article  PubMed  Google Scholar 

  • Yeam I, Cavatorta JR, Ripoll DR, Kang BC, Jahn MM (2007) Functional dissection of naturally occurring amino acid substitutions in eIF4E that confers recessive potyvirus resistance in plants. Plant Cell 19(9):2913–2928

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to the IPK bioinformatics group for assistance with the computer cluster and to two anonymous reviewers for their comments. This work was supported by core funding from the Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, and the Swedish University of Agricultural Sciences (SLU) Uppsala.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karl J. Schmid.

Additional information

Communicated by A. Schulman.

Electronic supplementary material

Below is the link to the electronic supplementary material.

PDF (123 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Günther, T., Schmid, K.J. Deleterious amino acid polymorphisms in Arabidopsis thaliana and rice. Theor Appl Genet 121, 157–168 (2010). https://doi.org/10.1007/s00122-010-1299-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-010-1299-4

Keywords

Navigation