Skip to main content
Log in

Cloning and genetic diversity analysis of a new P5CS gene from common bean (Phaseolus vulgaris L.)

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Δ1-pyrroline-5-carboxylate synthetase (P5CS) is the rate-limiting enzyme involved in the biosynthesis of proline in plants. By the 3′ rapid amplification of cDNA ends (3′-RACE) approach, a 2,246-bp cDNA sequence was obtained from common bean (Phaseolus vulgaris L.), denominated PvP5CS2 differing from another P5CS gene that we cloned previously from common bean (PvP5CS). The predicted amino acid sequence of PvP5CS2 has an overall 93.2% identity GmP5CS (Glycine max L. P5CS). However, PvP5CS2 shows only 83.7% identity in amino acid sequence to PvP5CS, suggesting PvP5CS2 represents a homolog of the soybean P5CS gene. Abundant indel (insertion and deletion events) and SNP (single nucleotide polymorphisms) were found in the cloned PvP5CS2 genome sequence when comparing 24 cultivated and 3 wild common bean accessions and these in turn reflected aspects of common bean evolution. Sequence alignment showed that genotypes from the same gene pool had similar nucleotide variation, while genotypes from different gene pools had distinctly different nucleotide variation for PvP5CS2. Furthermore, diversity along the gene sequence was not evenly distributed, being low in the glutamic-g-semialdehyde dehydrogenase catalyzing region, moderate in the Glu-5-kinase catalyzing region and high in the intervening region. Neutrality tests showed that PvP5CS2 was a conserved gene undergoing negative selection. A new marker (Pv97) was developed for genetic mapping of PvP5CS2 based on an indel between DOR364 and G19833 sequences and the gene was located between markers Bng126 and BMd045 on chromosome b01. The relationship of PvP5CS2 and a previously cloned pyrroline-5-carboxylate synthetase gene as well as the implications of this work on selecting for drought tolerance in common bean are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Afanador L, Haley S, Kelly JD (1993) Adoption of a mini-prep DNA extraction method for RAPD marker analysis in common bean (Phaseolus vulgaris L). Bean Improv Coop 36:10–11

    Google Scholar 

  • Armengaud P, Buhot LTN, Grenier-de March G, Savoure A (2004) Transcriptional regulation of proline biosynthesis in Medicago truncatula reveals developmental and environmental specific features. Physiol Plant 120:442–450

    Article  PubMed  CAS  Google Scholar 

  • Balasubramanian S, Harrison P, Hegyi H, Bertone P, Luscombe N, Echols N, McGarvey P, Zhang Z, Gerstein M (2002) SNPs on human chromosomes 21 and 22—analysis in terms of protein features and pseudogenes. Pharmacogenomics 3(3):393–402

    Article  PubMed  CAS  Google Scholar 

  • Barbazuk BW, Emrich S, Schnable PS (2007) SNP mining from maize 454 EST sequences. CSH protocols. doi:10.1101/pdb.prot4786

  • Beebe SE, Gaitan RE, Duque MC, Tohme J (2001) Diversity and origin of Andean landraces of common bean. Crop Sci 41:854–862

    Google Scholar 

  • Bhattramakki D, Dolan M, Hanafey M et al (2002) Insertion–deletion polymorphisms in 39 regions of maize genes occur frequently and can be used as highly informative genetic markers. Plant Mol Biol 48:539–547

    Article  PubMed  CAS  Google Scholar 

  • Blair MW, Pedraza F, Buendia HF, Gaitán-Solís E, Beebe SE, Gepts P, Tohme J (2003) Development of a genome-wide anchored microsatellite map for common bean (Phaseolus vulgaris L.). Theor Appl Genet 107:1362–1374

    Article  PubMed  CAS  Google Scholar 

  • Blair MW, Giraldo MC, Buendia HF, Tovar E, Duque MC, Beebe SE (2006) Microsatellite marker diversity in common bean (Phaseolus vulgaris L.). Theor Appl Genet 113:100–109

    Article  PubMed  CAS  Google Scholar 

  • Blair MW, Rodriguez LM, Pedraza F, Morales F, Beebe SE (2007) Genetic mapping of the bean golden yellow mosaic geminivirus resistance gene bgm-1 and linkage with potyvirus resistance in common bean (Phaseolus vulgaris L.). Theor Appl Genet 114:261–271

    Article  PubMed  CAS  Google Scholar 

  • Bohnert HJ, Jensen RG (1996) Strategies for engineering water stress tolerance in plants. Trends Biotechnol 14:89–97

    Article  CAS  Google Scholar 

  • Broughton WJ, Hernández G, Blair M, Beebe S, Gepts P, Vanderleyden J (2003) Beans (Phaseolus spp.)—model food legume. Plant Soil 252:55–128

    Article  CAS  Google Scholar 

  • Bundock PC, Henry RJ (2004) Single nucleotide polymorphism, haplotype diversity and recombination in the Isa gene of barley. Theor Appl Genet 109:543–551

    Article  PubMed  CAS  Google Scholar 

  • Chen JB, Wang SM, Jing RL, Mao XG (2009) Cloning the PvP5CS gene from common bean (Phaseolus vulgaris) and its expression patterns under abiotic stresses. J Plant Physiol 166:12–19

    Article  PubMed  CAS  Google Scholar 

  • Delauney AJ, Verma DPS (1993) Proline biosynthesis and osmoregulation in plants. Plant J 4:215–223

    Article  CAS  Google Scholar 

  • Dombrowski JE, Baldwin JC, Martin RC (2008) Cloning and characterization of a salt stress-inducible small GTPase gene from the model grass species Lolium temulentum. J Plant Physiol 165:651–661

    Article  PubMed  CAS  Google Scholar 

  • Duran LA, Blair MW, Giraldo MC, Machiavelli R, Prophete E, Nin JC, Beaver JS (2005) Morphological and molecular characterization of common bean (Phaseolus vulgaris L.) landraces from the Caribbean. Crop Sci 45:1320–1328

    Google Scholar 

  • Eyre-Walker A, Gaut RL, Hilton H, Feldman DL, Gaut BS (1998) Investigation of the bottleneck leading to the domestication of maize. Proc Natl Acad Sci USA 95:4441–4446

    Article  PubMed  CAS  Google Scholar 

  • Fu YX, Li WH (1993) Statistical tests of neutrality of mutations. Genetics 133:693–709

    PubMed  CAS  Google Scholar 

  • Fu D, Huang B, Xiao Y, Muthukrishnan S, Liang GH (2007) Overexpression of barley hva1 gene in creeping bent grass for improving drought tolerance. Plant Cell Rep 26(4):467–477

    Article  PubMed  CAS  Google Scholar 

  • Fujita T, Maggio A, Garcia-Rios M, Bressan RA, Csonka LN (1998) Comparative analysis of the regulation of expression and structures of two evolutionarily divergent genes for Δ1-pyrroline-5-carboxylate synthetase from tomato. Plant Physiol 118:661–674

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Rios M, Fujita T, Larosa PC, Locyi RD, Clithero JM, Bressan RA, Csonka LN (1997) Cloning of a polycistronic cDNA from tomato encoding γ-glutamyl kinase and γ-glutamyl phosphate reductase. Proc Natl Acad Sci 94:8249–8254

    Article  PubMed  CAS  Google Scholar 

  • Gepts P (1998) Origin and evolution of common bean: past events and recent trends. Hortic Sci 33:1124–1130

    Google Scholar 

  • Griffin TJ, Smith LM (2000) Single-nucleotide polymorphism analysis by MALDI-TOF mass spectrometry. Trends Biotechnol 18:77–84

    Article  PubMed  CAS  Google Scholar 

  • Hartl DL, Clark AG (1997) Principles of population genetics, 3rd edn. Sinauer Associates, Sunderland, MA

    Google Scholar 

  • Hill WG, Robertson A (1968) Linkage disequilibrium in finite populations. Theor Appl Genet 38:226–231

    Article  Google Scholar 

  • Hong Z, Lakkineni K, Zhang Z, Verma DPS (2000) Removal of feedback inhibition of Δ1-pyrroline-5-carboxylate synthetase results in increased proline accumulation and protection of plants from osmotic stress. Plant Physiol 122:1129–1136

    Article  PubMed  CAS  Google Scholar 

  • Hu CAA, Delauney AJ, Verma DPS (1992) A bifunctional enzyme (Δ1-pyrroline-5-carboxylate synthetase) catalyzes the first two steps in proline biosynthesis in plants. Proc Natl Acad Sci 89:9354–9358

    Article  PubMed  CAS  Google Scholar 

  • Hudson RR, Kaplan NL (1985) Statistical properties of the number of recombination events in the history of a sample of DNA sequences. Genetics 111:147–164

    PubMed  CAS  Google Scholar 

  • Igarashi Y, Yoshika Y, Sanada Y, Yamaguchi-Shinozaki K, Wada K, Shinozaki K (1997) Characterization of the gene for Δ1-pyrroline-5-carboxylate synthetase and correlation between the expression of the gene and salt tolerance in Oryza sativa L. Plant Mol Biol 33:857–865

    Article  PubMed  CAS  Google Scholar 

  • Ik-Young Choi, Hyten DL, Matukumalli LK, Song Q, Chaky JM, Quigley CV, Chase K, Lark KG, Reiter RS, Yoon MS, Hwang EY, Yi SI, Young ND, Shoemaker RC, Tassell CP, Specht JE, Cregan PB (2007) A soybean transcript map: gene distribution, haplotype and single-nucleotide polymorphism analysis. Genetics 176:685–696

    Article  CAS  Google Scholar 

  • Kanazin V, Talbert H, See D et al (2002) Discovery and assay of single-nucleotide polymorphisms in barley (Hordeum vulgare). Plant Mol Biol 48:529–537

    Article  PubMed  CAS  Google Scholar 

  • Karchin R, Diekhans M, Kelly L, Thomas DJ, Pieper U, Eswar N, Haussler D, Sali A (2005) LS-SNP: large-scale annotation of coding non-synonymous SNPs based on multiple information sources. Bioinformatics 21(12):2814–2820

    Article  PubMed  CAS  Google Scholar 

  • Kavi Kishor PB, Sangam S, Amrutha RN, Laxmi PS, Naidu KR, Rao KRSS, Rao S, Reddy KJ, Theriappan P, Sreenivasulu N (2005) Regulation of proline biosynthesis, degradation, uptake and transport in higher plants: its implications in plant growth and abiotic stress tolerance. Curr Sci 88:424–438

    Google Scholar 

  • Kimura M (1983) The neutral theory of molecular evolution. Cambridge University Press, Cambridge, MA

    Book  Google Scholar 

  • Kwak M, Velasco D, Gepts P (2008) Mapping homologous sequences for determinacy and photoperiod sensitivity in common bean (Phaseolus vulgaris). J Hered 99(3):283–291

    Article  PubMed  CAS  Google Scholar 

  • McClean P, Kami J, Gepts P (2004a) Genomic and genetic diversity in common bean. In: Wilson RF, Stalker HT, Brummer EC (eds) Legume crop genomics. AOCS Press, Champaign, IL, pp 60–82

    Google Scholar 

  • McClean PE, Lee RK, Miklas PN (2004b) Sequence diversity analysis of dihydroflavonol 4-reductase intron 1 in common bean. Genome 47:266–280

    Article  PubMed  CAS  Google Scholar 

  • Morrell PL, Toleno DM, Lundy KE, Clegg MT (2005) Low levels of linkage disequilibrium in wild barley (Hordeum vulgare ssp. spontaneum) despite high rates of self-fertilization. PNAS 102:2442–2447

    Article  PubMed  CAS  Google Scholar 

  • Murray MG, Thompson WR (1980) Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res 8:4321–4325

    Article  PubMed  CAS  Google Scholar 

  • Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New York, NY

    Google Scholar 

  • Nordborg M, Charlesworth B, Charlesworth D (1996) Increased levels of polymorphism surrounding selectively maintained sites in highly selfing species. Proc R Soc Lond Ser B 263:1033–1039

    Article  Google Scholar 

  • Olsen KM, Womack A, Garrett AR, Suddith JI, Purugganan MD (2002) Contrasting evolutionary forces in the Arabidopsis thaliana floral developmental pathway. Genetics 160:1641–1650

    PubMed  CAS  Google Scholar 

  • Pollak E (1987) On the theory of partially inbreeding finite populations I. Partial selfing. Genetics 117:353–360

    PubMed  CAS  Google Scholar 

  • Rafalski A (2002) Applications of single nucleotide polymorphisms in crop genetics. Curr Opin Plant Biol 5:94–100

    Article  PubMed  CAS  Google Scholar 

  • Rafalski A, Morgante M (2004) Corn and humans: recombination and linkage disequilibrium in two genomes of similar size. Trends Genet 20:103–111

    Article  PubMed  CAS  Google Scholar 

  • Ramírez M, Graham MA, Blanco-Lopez L, Silvente S, Medrano-Soto A, Blair MW, Hernandez G, Vance CLP, Lara M (2005) Sequencing and analysis of common bean ESTs. Building a foundation for functional genomics. Plant Physiol 137:1211–1227

    Article  PubMed  CAS  Google Scholar 

  • Rickert AM, Kim JH, Meyer S, Nagel A, Ballvora A, Oefner PJ, Gebhardt C (2003) First-generation SNP/indel markers tagging loci for pathogen resistance in the potato genome. Plant Biotechnol J 1:399–410

    Article  PubMed  CAS  Google Scholar 

  • Rozas J, Sánchez-DelBarrio JC, Messeguer X, Rozas R (2003) DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 19:2496–2497

    Article  PubMed  CAS  Google Scholar 

  • Schmid KJ, Sorensen TR, Stracke R et al (2003) Large-scale identification and analysis of genomewide single-nucleotide polymorphisms for mapping in Arabidopsis thaliana. Genome Res 13:1250–1257

    Article  PubMed  Google Scholar 

  • Soleimani VD, Baum BR, Johnson DA (2003) Efficient validation of single nucleotide polymorphisms in plants by allele-specific PCR, with an example from barley. Plant Mol Biol Report 21:281–288

    Article  CAS  Google Scholar 

  • Strizhov N, Abraham E, Okresz L et al (1997) Differential expression of two P5CS genes controlling proline accumulation during salt stress requires ABA and is regulated by ABA1, ABI1 and AXR2 in Arabidopsis. Plant J 12:557–569

    Article  PubMed  CAS  Google Scholar 

  • Tajima F (1989) Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123:585–595

    PubMed  CAS  Google Scholar 

  • Tenaillon MI, Sawkins MC, Long AD, Gaut RL, Doebley JF, Gaut BS (2001) Patterns of DNA sequence polymorphism along chromosome 1 of maize (Zea mays ssp. mays L.). Proc Natl Acad Sci USA 98:9161–9166

    Article  PubMed  CAS  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  PubMed  CAS  Google Scholar 

  • Verslues PE, Agarwal M, Katiyar-Agarwal S, Zhu JH, Zhu J-K (2006) Methods and concepts in quantifying resistance to drought, salt and freezing, abiotic stresses that affect plant water status. Plant J 45:523–539

    Article  PubMed  CAS  Google Scholar 

  • Watterson GA (1975) On the number of segregating sites in genetical models without recombination. Theor Popul Biol 7:256–276

    Article  PubMed  CAS  Google Scholar 

  • Yoshiba Y, Takeshi Katagiri TK, Ueda H, Mizoguchi Y, Shinozaki KY, Wada K, Harada Y, Shinozaki K (1995) Correlation between the induction of a gene for Δ1-pyrroline-5-carboxylate synthetase and the accumulation of proline in Arabidopsis thaliana under osmotic stress. Plant J 7(5):751–760

    Article  PubMed  CAS  Google Scholar 

  • Zhang CS, Liu Q, Verma DPS (1997) Characterization of Δ1-pyrroline-5-carboxylate synthetase gene promoter in transgenic Arabidopsis thaliana subjected to water stress. Plant Sci 129(1):81–89

    Article  CAS  Google Scholar 

  • Zhang X, Blair MW, Wang S (2008) Genetic diversity of Chinese common bean (Phaseolus vulgaris L.) landraces assessed with simple sequence repeat (SSR) markers. Theor Appl Genet 117:629–640

    Article  PubMed  CAS  Google Scholar 

  • Zhu YL, Song QJ, Hyten DL, Van Tassell CP, Matukumalli LK, Grimm DR, Hyatt SM, Fickus EW, Young ND, Cregan PB (2003) Single nucleotide polymorphisms in soybean. Genetics 163:1123–1134

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The following are acknowledged: L. Díaz, A. Hoyos (International Center for Tropical Agriculture, Cali, Colombia) and Chang Xiaoping (Institute of Crop Sciences, the Chinese Academy of Agricultural Sciences, Beijing, China).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Matthew W. Blair or Shumin Wang.

Additional information

Communicated by D. Lightfoot.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Table (DOC 73 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, J., Zhang, X., Jing, R. et al. Cloning and genetic diversity analysis of a new P5CS gene from common bean (Phaseolus vulgaris L.). Theor Appl Genet 120, 1393–1404 (2010). https://doi.org/10.1007/s00122-010-1263-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-010-1263-3

Keywords

Navigation