Skip to main content
Log in

Techniken zur Leberfettquantifizierung bei der Risikostratifikation von Diabetikern

Techniques for quantification of liver fat in risk stratification of diabetics

  • Leitthema
  • Published:
Der Radiologe Aims and scope Submit manuscript

Zusammenfassung

Klinisches/methodisches Problem

Die Fettleber scheint einen unmittelbaren Einfluss auf die Pathophysiologie des Diabetes mellitus Typ 2 zu besitzen. Zur Detektion und Quantifizierung des Leberfetts werden in der klinischen Diagnostik akkurate Verfahren gebraucht.

Radiologische Standardverfahren

Ein einfaches Verfahren ist die Chemical-shift-kodierte Magnetresonanztomographie (MRT).

Methodische Innovationen

Eine suffiziente Quantifizierung von Leberfett mithilfe der Chemical-shift-kodierten MRT erfordert eine Berücksichtigung von Störvariablen, wie den T2*-Zerfall, den T1-Wiederaufbau und die multispektrale Komplexität von Fett.

Leistungsfähigkeit

Eine Korrektur aller Störvariablen wird als Proton-density-Fettfraktion bezeichnet. Diese liefert unabhängig von der verwendeten Einstellung und Hardware reproduzierbare Ergebnisse.

Bewertung

Die korrigierte Proton-density-Fettfraktion ist ein akkurater Biomarker zur Quantifizierung von Leberfett.

Empfehlung für die Praxis

Die akkurate und reproduzierbare Quantifizierung von Leberfett in der MRT erfordert eine Berechnung der Proton-density-Fettfraktion.

Abstract

Clinical/methodical issue

Fatty liver disease plays an important role in the development of type 2 diabetes. Accurate techniques for detection and quantification of liver fat are essential for clinical diagnostics.

Standard radiological methods

Chemical shift-encoded magnetic resonance imaging (MRI) is a simple approach to quantify liver fat content.

Methodical innovations

Liver fat quantification using chemical shift-encoded MRI is influenced by several bias factors, such as T2* decay, T1 recovery and the multispectral complexity of fat.

Performance

The confounder corrected proton density fat fraction is a simple approach to quantify liver fat with comparable results independent of the software and hardware used.

Achievements

The proton density fat fraction is an accurate biomarker for assessment of liver fat.

Practical recommendations

An accurate and reproducible quantification of liver fat using chemical shift-encoded MRI requires a calculation of the proton density fat fraction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5

Literatur

  1. Tamayo T, Rosenbauer J, Wild SH et al (2014) Diabetes in Europe: an update. Diabetes Res Clin Pract 103(2):206–217

    Article  CAS  PubMed  Google Scholar 

  2. Cusi K (2009) Nonalcoholic fatty liver disease in type 2 diabetes mellitus. Curr Opin Endocrinol Diabetes Obes 16(2):141–149

    Article  PubMed  Google Scholar 

  3. Roden M (2006) Mechanisms of disease: hepatic steatosis in type 2 diabetes – pathogenesis and clinical relevance. Nat Clin Pract Endocrinol Metab 2(6):335–348

    Article  CAS  PubMed  Google Scholar 

  4. Völzke H, Robinson DM, Kleine V et al (2005) Hepatic steatosis is associated with an increased risk of carotid atherosclerosis. World J Gastroenterol 11(12):1848–1853

    Article  PubMed Central  PubMed  Google Scholar 

  5. Ratziu V, Charlotte F, Heurtier A et al (2005) Sampling variability of liver biopsy in nonalcoholic fatty liver disease. Gastroenterology 128(7):1898–1906

    Article  PubMed  Google Scholar 

  6. Levenson H, Greensite F, Hoefs J et al (1991) Fatty infiltration of the liver: quantification with phase-contrast MR imaging at 1.5 T vs biopsy. AJR Am J Roentgenol 156(2):307–312

    Article  CAS  PubMed  Google Scholar 

  7. Kühn JP, Evert M, Friedrich N et al (2011) Noninvasive quantification of hepatic fat content using three-echo dixon magnetic resonance imaging with correction for t2* relaxation effects. Invest Radiol 46(12):783–789

    Article  PubMed  Google Scholar 

  8. Fishbein M, Castro F, Cheruku S et al (2005) Hepatic MRI for fat quantitation: its relationship to fat morphology, diagnosis, and ultrasound. J Clin Gastroenterol 39(7):619–625

    Article  PubMed  Google Scholar 

  9. Rinella ME, McCarthy R, Thakrar K et al (2003) Dual-echo, chemical shift gradient-echo magnetic resonance imaging to quantify hepatic steatosis: implications for living liver donation. Liver Transpl 9(8):851–856

    Article  PubMed  Google Scholar 

  10. Jung EM, Wiggermann P, Stroszczynski C et al (2012) Ultrasound diagnostics of diffuse liver diseases. Radiologe 52(8):706–716

    Article  CAS  PubMed  Google Scholar 

  11. Dendl LM, Schreyer AG (2012) Steatohepatitis – a challenge? Radiologe 52(8):745–752

    Article  CAS  PubMed  Google Scholar 

  12. Zhang B, Ding F, Chen T et al (2014) Ultrasound hepatic/renal ratio and hepatic attenuation rate for quantifying liver fat content. World J Gastroenterol 20(47):17985–17992

    PubMed Central  CAS  PubMed  Google Scholar 

  13. Schlett CL, Hoffmann U (2011) Identification and quantification of fat compartments with CT and MRI and their importance. Radiologe 51(5):372–378

    Article  CAS  PubMed  Google Scholar 

  14. Reeder SB, Hu HH, Sirlin CB (2012) Proton density fat-fraction: a standardized MR-based biomarker of tissue fat concentration. J Magn Reson Imaging 36(5):1011–1014

    Article  PubMed  Google Scholar 

  15. Kühn J-P, Hernando D, Mensel B et al (2014) Quantitative chemical shift-encoded MRI is an accurate method to quantify hepatic steatosis. J Magn Reson Imaging 39(6):1494–1501

    Article  PubMed Central  PubMed  Google Scholar 

  16. Kang GH, Cruite I, Shiehmorteza M et al (2011) Reproducibility of MRI-determined proton density fat fraction across two different MR scanner platforms. J Magn Reson Imaging 34(4):928–934

    Article  PubMed  Google Scholar 

  17. Yokoo T, Shiehmorteza M, Hamilton G et al (2011) Estimation of hepatic proton-density fat fraction by using MR imaging at 3.0 T. Radiology 258(3):749–759

    Article  PubMed Central  PubMed  Google Scholar 

  18. Cassidy FH, Yokoo T, Aganovic L et al (2009) Fatty liver disease: MR imaging techniques for the detection and quantification of liver steatosis1. Radiographics 29(1):231–260

    Article  PubMed  Google Scholar 

  19. Bydder M, Shiehmorteza M, Yokoo T et al (2010) Assessment of liver fat quantification in the presence of iron. Magn Reson Imaging 28(6):767–776

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Westphalen ACA, Qayyum A, Yeh BM et al (2007) Liver fat: effect of hepatic iron deposition on evaluation with opposed-phase MR imaging. Radiology 242(2):450–455

    Article  PubMed  Google Scholar 

  21. Anderson LJ, Holden S, Davis B et al (2001) Cardiovascular T2-star (T2*) magnetic resonance for the early diagnosis of myocardial iron overload. Eur Heart J 22(23):2171–2179

    Article  CAS  PubMed  Google Scholar 

  22. Au W-Y, Lam WW-M, Chu W et al (2008) A T2* magnetic resonance imaging study of pancreatic iron overload in thalassemia major. Haematologica 93(1):116–119

    Article  PubMed  Google Scholar 

  23. Wood JC (2011) Impact of iron assessment by MRI. Hematology/the Education Program of the American Society of Hematology. American Society of Hematology Education Program, S 443–450

  24. Sirlin CB, Reeder SB (2010) Magnetic resonance imaging quantification of liver iron. Magn Reson Imaging Clin North Am 18(3):359–381

    Article  Google Scholar 

  25. Bazelaire CMJ de, Duhamel GD, Rofsky NM, Alsop DC (2004) MR imaging relaxation times of abdominal and pelvic tissues measured in vivo at 3.0 T: preliminary results. Radiology 230(3):652–659

    Article  PubMed  Google Scholar 

  26. Meisamy S, Hines CDG, Hamilton G et al (2011) Quantification of hepatic steatosis with T1-independent, T2*-corrected MR imaging with spectral modeling of fat: blinded comparison with MR spectroscopy. Radiology 258(3):767–775

    Article  PubMed Central  PubMed  Google Scholar 

  27. Johnson BL, Schroeder ME, Wolfson T et al (2014) Effect of flip angle on the accuracy and repeatability of hepatic proton density fat fraction estimation by complex data-based, T1-independent, T2*-corrected, spectrum-modeled MRI. J Magn Reson Imaging 31(1):30–43

    Google Scholar 

  28. Hines CD, Yokoo T, Bydder M et al (2010) Optimization of flip angle to allow tradeoffs in T1 bias and SNR performance for fat quantification. The International Society of Magnetic Resonance in Medicine 18th Meeting. Stockholm, Schweden (abstract)

  29. Kühn J-P, Hernando D, Muñoz Del Rio A et al (2012) Effect of multipeak spectral modeling of fat for liver iron and fat quantification: correlation of biopsy with MR imaging results. Radiology 265(1):133–142

    Article  PubMed Central  PubMed  Google Scholar 

  30. Yang IY, Cui Y, Wiens CN et al (2014) Fat fraction bias correction using T1 estimates and flip angle mapping. J Magn Reson Imaging 39(1):217–223

    Article  PubMed  Google Scholar 

  31. Reeder SB, Robson PM, Yu H et al (2009) Quantification of hepatic steatosis with MRI: the effects of accurate fat spectral modeling. J Magn Reson Imaging 29(6):1332–1339

    Article  PubMed Central  PubMed  Google Scholar 

  32. Hernando D, Vigen KK, Shimakawa A, Reeder SB (2012) R*(2) mapping in the presence of macroscopic B0 field variations. Magn Reson Med 68(3):830–840

    Article  PubMed Central  PubMed  Google Scholar 

  33. George DK, Goldwurm S, MacDonald GA et al (1998) Increased hepatic iron concentration in nonalcoholic steatohepatitis is associated with increased fibrosis. Gastroenterology 114(2):311–318

    Article  CAS  PubMed  Google Scholar 

  34. Bonkovsky HL, Jawaid Q, Tortorelli K et al (1999) Non-alcoholic steatohepatitis and iron: increased prevalence of mutations of the HFE gene in non-alcoholic steatohepatitis. J Hepatol 31(3):421–429

    Article  CAS  PubMed  Google Scholar 

  35. Van Beers BE (2014) Science to practice: can we diagnose nonalcoholic steatohepatitis with intravoxel incoherent motion diffusion-weighted MR imaging? Radiology 270(1):1–2

    Google Scholar 

  36. Wu Z, Matsui O, Kitao A et al (2013) Usefulness of Gd-EOB-DTPA-enhanced MR imaging in the evaluation of simple steatosis and nonalcoholic steatohepatitis. J Magn Reson Imaging 37(5):1137–1143

    Article  PubMed  Google Scholar 

Download references

Einhaltung ethischer Richtlinien

Interessenkonflikt. J.-P. Kühn. M.C. Spoerl, C. Mahlke, K. Hegenscheid geben an, dass kein Interessenkonflikt besteht. Dieser Beitrag beinhaltet keine Studien an Menschen oder Tieren.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J.-P. Kühn.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kühn, JP., Spoerl, M., Mahlke, C. et al. Techniken zur Leberfettquantifizierung bei der Risikostratifikation von Diabetikern. Radiologe 55, 308–313 (2015). https://doi.org/10.1007/s00117-014-2720-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00117-014-2720-9

Schlüsselwörter

Keywords

Navigation