Skip to main content
Log in

Methodische Grundlagen der Optimierung funktioneller MR-Experimente

Methodological principles for optimising functional MRI experiments

  • Funktionelle Bildgebung in der Psychiatrie
  • Published:
Der Radiologe Aims and scope Submit manuscript

Zusammenfassung

Die funktionelle Magnetresonanztomographie (fMRT) des Zentralnervensystems ist eine der meistgenutzten Methoden zur Lokalisierung neuronaler Aktivität im Gehirn. Obwohl die Sensitivität der fMRT vergleichsweise gering ist, kann durch die Auswahl geeigneter experimenteller Parameter die Empfindlichkeit dieses bildgebenden Verfahrens gesteigert und die Reliabilität der Ergebnisse gewährleistet werden. In diesem Artikel werden deshalb Ansätze für die Optimierung des Paradigmendesigns, der MR-Bildgebung und der Datenauswertung diskutiert. Klinischen Forschern und interessierten Ärzten sollen dadurch Richtgrößen für die Durchführung effektiver fMRT-Experimente vermittelt werden.

Abstract

Functional magnetic resonance imaging (fMRI) is one of the most common methods for localising neuronal activity in the brain. Even though the sensitivity of fMRI is comparatively low, the optimisation of certain experimental parameters allows obtaining reliable results. In this article, approaches for optimising the experimental design, imaging parameters and analytic strategies will be discussed. Clinical neuroscientists and interested physicians will receive practical rules of thumb for improving the efficiency of brain imaging experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2a–c
Abb. 3
Abb. 4
Abb. 5
Abb. 6a–d
Abb. 7a, b
Abb. 8
Abb. 9
Abb. 10
Abb. 11
Abb. 12

Literatur

  1. Bandettini PA (2002) Selection of the optimal pulse sequence for fMRI. In: Jezzard P, Matthews PM, Smith SM (eds) Functional MRI. Oxford University Press, pp 121–143

  2. Birn RM, Cox RW, Bandettini PA (2002) Detection versus estimation in event-related fMRI: choosing the optimal stimulus timing. Neuroimage 15:252–264

    Article  Google Scholar 

  3. Bock M (2002) Technische Komponenten. In: Reiser M, Semmler W (Hrsg) Magnetresonanztomographie. Springer, Berlin Heidelberg New York, S 82–96

  4. Brix G, Kolem H, Nitz WR (2002) Bildkontraste und Bildgebungssequenzen. In: Reiser M, Semmler W (Hrsg) Magnetresonanztomographie. Springer, Berlin Heidelberg New York, S 41–82

  5. Cohen MS (1997) Parametric analysis of fMRI data using linear systems methods. Neuroimage 6:93–103

    Article  CAS  PubMed  Google Scholar 

  6. Desmond JE, Glover GH (2002) Estimating sample size in functional MRI (fMRI) neuroimaging studies: statistical power analyses. J Neurosci Methods 118:115–128

    Article  Google Scholar 

  7. Donaldson DI, Buckner RL (2002) Effective paradigm design. In: Jezzard P, Matthews PM, Smith SM (eds) Functional MRI. Oxford University Press, pp 177–195

  8. Edward V, Windischberger C, Cunnington R, Erdler M, Lanzenberger R, Mayer D, Endl W, Beisteiner R (2000) Quantification of fMRI artifact reduction by a novel plaster cast head holder. Hum Brain Map 11:207–213

    Article  CAS  PubMed  Google Scholar 

  9. Friston KJ, Frith CD, Turner R, Frackowiak RSJ (1995) Characterizing evoked hemodynamics with fMRI. Neuroimage 2:157–165

    Article  Google Scholar 

  10. Friston KJ, Holmes AP, Worsley KJ (1999) How many subjects constitute a study? Neuroimage 10:1–5

    Article  CAS  PubMed  Google Scholar 

  11. Friston KJ, Zarahn E, Josephs O, Henson RNA, Dale AM (1999) Stochastic designs in event-related fMRI. Neuroimage 10:607–619

    Article  Google Scholar 

  12. Glover GH (2002) Hardware for functional MRI. In: Jezzard P, Matthews PM, Smith SM (eds) Functional MRI. Oxford University Press

  13. Krüger G, Kastrup A, Glover GH (2001) Neuroimaging at 1.5 and at 3.0 Tesla: comparison of oxygenation-sensitive magnetic resonance imaging. Magn Reson Med 45:595–604

    Google Scholar 

  14. Liu TT (2004) Efficiency, power, and entropy in event-related fMRI with multiple trial types—part II: design of experiments. Neuroimage 21:401–413

    Article  Google Scholar 

  15. Liu TT, Frank LR (2004) Efficiency, power, and entropy in event-related fMRI with multiple trial types—part I: theory. Neuroimage 21:387–400

    Article  Google Scholar 

  16. Mechelli A, Price CJ, Henson RNA, Friston KJ (2003) Estimating efficiency a priori: a comparison of blocked and randomized designs. Neuroimage 18:798–805

    Article  Google Scholar 

  17. Merboldt KD, Fransson P, Bruhn H, Frahm J (2001) Functional MRI of the human amygdala. Neuroimage 14:253–257

    Article  Google Scholar 

  18. Murphy K, Garavan H (2004) An empirical investigation into the number of subjects required for an event-related fMRI study. Neuroimage 22:879–885

    Article  Google Scholar 

  19. Ogawa S, Lee TM, Kay AR, Tank DW (1990) Brain magnetic resonance imaging with contrast dependent on blood oxygenation. PNAS 87:9868–9872

    Google Scholar 

  20. Ugurbil K, Hu XP, Chen W, Zhu XH, Kim SG, Georgopoulos A (1999) Functional mapping in the human brain using high magnetic fields. Philos Trans R Soc Lond B Biol Sci 354:1195–1213

    Article  Google Scholar 

  21. Villringer A, Dirnagel U (1995) Coupling of brain activity and cerebral blood flow: basis of functional neuroimaging. Cerebrovasc Brain Metab Rev 7:240–276

    Google Scholar 

  22. Wagner TD, Nichols TE (2003) Optimization of experimental design in fMRI: a general framework using a genetic algorithm. Neuroimage 18:293–309

    Article  Google Scholar 

  23. Ward HA, Riederer SJ, Grimm RC, Ehmann RL, Felmlee JP, Jack CR Jr (2004) Prospective multiaxial motion correction of fMRI. Magn Reson Med 43:459–469

    Google Scholar 

  24. Wüstenberg T, Jordan K, Giesel FL, Villringer A (2003) Physiological and technical limitations of functional magnetic resonance imaging (fMRI)—consequences for clinical use. Radiologe 43:552–557

    Article  Google Scholar 

  25. Zeffiro T (1996) Clinical functional image analysis: artifact detection and reduction. Neuroimage 4:95–100

    Article  Google Scholar 

Download references

Danksagung

Spezieller Dank gilt Dr. I.D. Wilkinson von der Academic Unit of Radiology an der University of Sheffield sowie Dr. I. Wartenburger und Dr. H. Heekeren aus der Neurologischen Klinik der Charité für ihre Unterstützung bei den Messungen zur Quantifikation von Suszeptibilitätsartefakten in GE-EPI-Messungen.

Interessenkonflikt:

Der korrespondierende Autor versichert, dass keine Verbindungen mit einer Firma, deren Produkt in dem Artikel genannt ist, oder einer Firma, die ein Konkurrenzprodukt vertreibt, bestehen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Wüstenberg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wüstenberg, T., Giesel, F.L. & Strasburger, H. Methodische Grundlagen der Optimierung funktioneller MR-Experimente. Radiologe 45, 99–112 (2005). https://doi.org/10.1007/s00117-004-1164-z

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00117-004-1164-z

Schlüsselwörter

Keywords

Navigation