Skip to main content
Log in

Hilfreiche Zusatzuntersuchungen beim idiopathischen Parkinson-Syndrom

Helpful instrumental examinations in idiopathic Parkinson’s disease

  • Leitthema
  • Published:
Der Nervenarzt Aims and scope Submit manuscript

Zusammenfassung

Hintergrund

Die klinische Diagnose eines idiopathischen Parkinson-Syndroms (IPS) kann schwierig sein. In solchen Fällen empfiehlt es sich, zusätzliche apparative Methoden einzusetzen.

Fragestellung

Dieser Artikel gibt einen Überblick über aktuelle und vielversprechende zukünftige Untersuchungsmethoden beim beginnenden IPS.

Ergebnisse

Die 1,5-Tesla-Magnetresonanztomographie (MRT) bzw. die Computertomographie sind v. a. zur Abgrenzung symptomatischer Parkinson-Syndrome etabliert. Neue MRT-Technologien (Diffusions-Tensor-Imaging-MRT, eisensensitive und neuromelaninsensitive Sequenzen im Hochfeld-MRT) können künftig vor allem für die Frühdiagnose Bedeutung erlangen. Für die Früh- und Differenzialdiagnostik ist die transkranielle B‑Bild-Sonographie der Substantia nigra und Basalganglien etabliert, insbesondere in der Kombination mit diagnostischen Markern, dies erfordert aber einen ausreichend geschulten Untersucher bzw. den Einsatz validierter digitaler Bildanalyseinstrumente. Von den nuklearmedizinischen Verfahren differenziert der DATScan das IPS gut vom essenziellen Tremor, medikamentösen Parkinsonoid und von psychogener Bewegungsstörung, nicht aber von den atypischen PS. Hingegen können die Fluorodesoxyglucose-Positronenemissionstomographie und die myokardiale MIBG-Szintigraphie die Abgrenzung zu atypischen PS unterstützen. Die Riechtestung ist für die routinemäßige Anwendung zu empfehlen, insbesondere in Kombination mit weiteren diagnostischen Markern. Dies trifft bislang nicht zu für genetische, laborchemische oder histologische Untersuchungen. Vielversprechend für die klinische Anwendung sind Verfahren zur sensorbasierten Detektion von Bewegungsstörungen.

Schlussfolgerung

Apparative Diagnoseverfahren können zur klareren Abgrenzung gegenüber Differenzialdiagnosen des IPS hilfreich sein.

Abstract

Background

The clinical diagnosis of idiopathic Parkinson’s disease (iPD) can be challenging. In these cases, additional diagnostic methods are available that can help to improve diagnostic accuracy.

Objectives, material and methods

This article provides an overview of currently available and promising novel ancillary methods for the early and differential diagnosis of iPD.

Results

Imaging tools, such as 1.5 Tesla magnetic resonance imaging (MRI) and computed tomography (CT) are mainly used for the differentiation between iPD and symptomatic parkinsonian syndromes (PS). High-resolution diffusion tensor imaging and iron and neuromelanin-sensitive high-field MRI sequences can become important in the future, particularly for earlier diagnosis. Transcranial B‑mode sonography of the substantia nigra and basal ganglia is established for early and differential diagnostics, especially in the combination of diagnostic markers but necessitates an adequately trained investigator and the use of validated digital image analysis instruments. DATScan can discriminate iPD from essential tremor, medication-induced parkinsonism and psychogenic movement disorder but not iPD from atypical PS. For the latter differential diagnosis, fluorodeoxyglucose positron emission tomography and myocardial metaiodobenzylguanidine scintigraphy can be helpful. Olfactory testing should preferably be used in combination with other diagnostic tests. Genetic, biochemical and histopathological tests are currently not recommended for routine use. Novel sensor-based techniques have a high potential to support clinical diagnosis of iPD but have not yet reached a developmental stage that is sufficient for clinical use. Novel sensor-based techniques have high potential to support clinical diagnosis of iPD, but have not yet reached a development stage that is sufficient for clinical use.

Conclusion

Ancillary diagnostic methods can support the early and differential diagnosis of iPD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3

Literatur

  1. Berardelli A, Wenning GK, Antonini A, Berg D, Bloem BR, Bonifati V, Brooks D, Burn DJ, Colosimo C, Fanciulli A, Ferreira J, Gasser T, Grandas F, Kanovsky P, Kostic V, Kulisevsky J, Oertel W, Poewe W, Reese JP, Relja M, Ruzicka E, Schrag A, Seppi K, Taba P, Vidailhet M (2013) EFNS/MDS-ES/ENS [corrected] recommendations for the diagnosis of Parkinson’s disease. Eur J Neurol 20(1):16–34. doi:10.1111/ene.12022

    Article  CAS  PubMed  Google Scholar 

  2. Deuschl GOW, Reichmann H, Dams J, Dodel R (2016) Leitlinien für Diagnostik und Therapie in der Neurologie: Idiopathisches Parkinson-Syndrom. Entwicklungsstufe: S3. http://www.dgn.org/images/red_leitlinien/LL_2016/PDFs_Download/030010_LL_langfassung_ips_2016.pdf. Zugegriffen: 01.01.2017

    Google Scholar 

  3. Berg D, Postuma RB, Adler CH, Bloem BR, Chan P, Dubois B, Gasser T, Goetz CG, Halliday G, Joseph L, Lang AE, Liepelt-Scarfone I, Litvan I, Marek K, Obeso J, Oertel W, Olanow CW, Poewe W, Stern M, Deuschl G (2015) MDS research criteria for prodromal Parkinson’s disease. Mov Disord 30(12):1600–1611. doi:10.1002/mds.26431

    Article  PubMed  Google Scholar 

  4. Mahlknecht P, Hotter A, Hussl A, Esterhammer R, Schocke M, Seppi K (2010) Significance of MRI in diagnosis and differential diagnosis of Parkinson’s disease. Neurodegener Dis 7(5):300–318. doi:10.1159/000314495

    Article  PubMed  Google Scholar 

  5. Postuma RB, Berg D, Stern M, Poewe W, Olanow CW, Oertel W, Obeso J, Marek K, Litvan I, Lang AE, Halliday G, Goetz CG, Gasser T, Dubois B, Chan P, Bloem BR, Adler CH, Deuschl G (2015) MDS clinical diagnostic criteria for Parkinson’s disease. Mov Disord 30(12):1591–1601. doi:10.1002/mds.26424

    Article  PubMed  Google Scholar 

  6. Meijer FJ, Aerts MB, Abdo WF, Prokop M, Borm GF, Esselink RA, Goraj B, Bloem BR (2012) Contribution of routine brain MRI to the differential diagnosis of parkinsonism: a 3-year prospective follow-up study. J Neurol 259(5):929–935. doi:10.1007/s00415-011-6280-x

    Article  PubMed  Google Scholar 

  7. Aerts MB, Esselink RA, Abdo WF, Meijer FJ, Drost G, Norgren N, Janssen MJ, Borm GF, Bloem BR, Verbeek MM (2015) Ancillary investigations to diagnose parkinsonism: a prospective clinical study. J Neurol 262(2):346–356. doi:10.1007/s00415-014-7568-4

    Article  CAS  PubMed  Google Scholar 

  8. Seppi K, Schocke MF, Esterhammer R, Kremser C, Brenneis C, Mueller J, Boesch S, Jaschke W, Poewe W, Wenning GK (2003) Diffusion-weighted imaging discriminates progressive supranuclear palsy from PD, but not from the parkinson variant of multiple system atrophy. Neurology 60(6):922–927

    Article  CAS  PubMed  Google Scholar 

  9. Meijer FJ, van Rumund A, Tuladhar AM, Aerts MB, Titulaer I, Esselink RA, Bloem BR, Verbeek MM, Goraj B (2015) Conventional 3T brain MRI and diffusion tensor imaging in the diagnostic workup of early stage parkinsonism. Neuroradiology 57(7):655–669. doi:10.1007/s00234-015-1515-7

    Article  PubMed  PubMed Central  Google Scholar 

  10. Planetta PJ, Ofori E, Pasternak O, Burciu RG, Shukla P, DeSimone JC, Okun MS, McFarland NR, Vaillancourt DE (2016) Free-water imaging in Parkinson’s disease and atypical Parkinsonism. Brain 139(Pt 2):495–508. doi:10.1093/brain/awv361

    Article  PubMed  Google Scholar 

  11. Vaillancourt DE, Spraker MB, Prodoehl J, Abraham I, Corcos DM, Zhou XJ, Comella CL, Little DM (2009) High-resolution diffusion tensor imaging in the substantia nigra of de novo Parkinson disease. Neurology 72(16):1378–1384. doi:10.1212/01.wnl.0000340982.01727.6e

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Reiter E, Mueller C, Pinter B, Krismer F, Scherfler C, Esterhammer R, Kremser C, Schocke M, Wenning GK, Poewe W, Seppi K (2015) Dorsolateral nigral hyperintensity on 3.0T susceptibility-weighted imaging in neurodegenerative Parkinsonism. Mov Disord 30(8):1068–1076. doi:10.1002/mds.26171

    Article  CAS  PubMed  Google Scholar 

  13. Blazejewska AI, Schwarz ST, Pitiot A, Stephenson MC, Lowe J, Bajaj N, Bowtell RW, Auer DP, Gowland PA (2013) Visualization of nigrosome 1 and its loss in PD: pathoanatomical correlation and in vivo 7 T MRI. Neurology 81(6):534–540. doi:10.1212/WNL.0b013e31829e6fd2

    Article  PubMed  PubMed Central  Google Scholar 

  14. Acosta-Cabronero J, Cardenas-Blanco A, Betts MJ, Butryn M, Valdes-Herrera JP, Galazky I, Nestor PJ (2016) The whole-brain pattern of magnetic susceptibility perturbations in Parkinson’s disease. Brain. doi:10.1093/brain/aww278

    PubMed  Google Scholar 

  15. Ohtsuka C, Sasaki M, Konno K, Kato K, Takahashi J, Yamashita F, Terayama Y (2014) Differentiation of early-stage parkinsonisms using neuromelanin-sensitive magnetic resonance imaging. Parkinsonism Relat Disord 20(7):755–760. doi:10.1016/j.parkreldis.2014.04.005

    Article  PubMed  Google Scholar 

  16. Reimao S, Ferreira S, Nunes RG, Pita Lobo P, Neutel D, Abreu D, Goncalves N, Campos J, Ferreira JJ (2016) Magnetic resonance correlation of iron content with neuromelanin in the substantia nigra of early-stage Parkinson’s disease. Eur J Neurol 23(2):368–374. doi:10.1111/ene.12838

    Article  CAS  PubMed  Google Scholar 

  17. Brodoehl S, Klingner C, Volk GF, Bitter T, Witte OW, Redecker C (2012) Decreased olfactory bulb volume in idiopathic Parkinson’s disease detected by 3.0-tesla magnetic resonance imaging. Mov Disord 27(8):1019–1025. doi:10.1002/mds.25087

    Article  PubMed  Google Scholar 

  18. Paschen L, Schmidt N, Wolff S, Cnyrim C, van Eimeren T, Zeuner KE, Deuschl G, Witt K (2015) The olfactory bulb volume in patients with idiopathic Parkinson’s disease. Eur J Neurol 22(7):1068–1073. doi:10.1111/ene.12709

    Article  CAS  PubMed  Google Scholar 

  19. Sengoku R, Matsushima S, Bono K, Sakuta K, Yamazaki M, Miyagawa S, Komatsu T, Mitsumura H, Kono Y, Kamiyama T, Ito K, Mochio S, Iguchi Y (2015) Olfactory function combined with morphology distinguishes Parkinson’s disease. Parkinsonism Relat Disord 21(7):771–777. doi:10.1016/j.parkreldis.2015.05.001

    Article  PubMed  Google Scholar 

  20. Kassubek J, Muller HP (2016) Computer-based magnetic resonance imaging as a tool in clinical diagnosis in neurodegenerative diseases. Expert Rev Neurother 16(3):295–306. doi:10.1586/14737175.2016.1146590

    Article  CAS  PubMed  Google Scholar 

  21. Becker G, Seufert J, Bogdahn U, Reichmann H, Reiners K (1995) Degeneration of substantia nigra in chronic Parkinson’s disease visualized by transcranial color-coded real-time sonography. Neurology 45(1):182–184

    Article  CAS  PubMed  Google Scholar 

  22. Berg D, Godau J, Walter U (2008) Transcranial sonography in movement disorders. Lancet Neurol 7(11):1044–1055. doi:10.1016/S1474-4422(08)70239-4

    Article  PubMed  Google Scholar 

  23. Berg D, Behnke S, Seppi K, Godau J, Lerche S, Mahlknecht P, Liepelt-Scarfone I, Pausch C, Schneider N, Gaenslen A, Brockmann K, Srulijes K, Huber H, Wurster I, Stockner H, Kiechl S, Willeit J, Gasperi A, Fassbender K, Gasser T, Poewe W (2013) Enlarged hyperechogenic substantia nigra as a risk marker for Parkinson’s disease. Mov Disord 28(2):216–219. doi:10.1002/mds.25192

    Article  CAS  PubMed  Google Scholar 

  24. Iranzo A, Lomena F, Stockner H, Valldeoriola F, Vilaseca I, Salamero M, Molinuevo JL, Serradell M, Duch J, Pavia J, Gallego J, Seppi K, Hogl B, Tolosa E, Poewe W, Santamaria J, Sleep Innsbruck Barcelona (SINBAR) group (2010) Decreased striatal dopamine transporter uptake and substantia nigra hyperechogenicity as risk markers of synucleinopathy in patients with idiopathic rapid-eye-movement sleep behaviour disorder: a prospective study [corrected]. Lancet Neurol 9(11):1070–1077. doi:10.1016/S1474-4422(10)70216-7

    Article  CAS  PubMed  Google Scholar 

  25. Busse K, Heilmann R, Kleinschmidt S, Abu-Mugheisib M, Hoppner J, Wunderlich C, Gemende I, Kaulitz L, Wolters A, Benecke R, Walter U (2012) Value of combined midbrain sonography, olfactory and motor function assessment in the differential diagnosis of early Parkinson’s disease. J Neurol Neurosurg Psychiatr 83(4):441–447. doi:10.1136/jnnp-2011-301719

    Article  PubMed  Google Scholar 

  26. Gaenslen A, Wurster I, Brockmann K, Huber H, Godau J, Faust B, Lerche S, Eschweiler GW, Maetzler W, Berg D (2014) Prodromal features for Parkinson’s disease – baseline data from the TREND study. Eur J Neurol 21(5):766–772. doi:10.1111/ene.12382

    Article  CAS  PubMed  Google Scholar 

  27. Walter U, Heilmann R, Kaulitz L, Just T, Krause BJ, Benecke R, Hoppner J (2015) Prediction of Parkinson’s disease subsequent to severe depression: a ten-year follow-up study. J Neural Transm (Vienna) 122(6):789–797. doi:10.1007/s00702-014-1313-0

    Article  Google Scholar 

  28. Walter U, Dressler D, Probst T, Wolters A, Abu-Mugheisib M, Wittstock M, Benecke R (2007) Transcranial brain sonography findings in discriminating between parkinsonism and idiopathic Parkinson disease. Arch Neurol 64(11):1635–1640. doi:10.1001/archneur.64.11.1635

    Article  PubMed  Google Scholar 

  29. Gaenslen A, Unmuth B, Godau J, Liepelt I, Di Santo A, Schweitzer KJ, Gasser T, Machulla HJ, Reimold M, Marek K, Berg D (2008) The specificity and sensitivity of transcranial ultrasound in the differential diagnosis of Parkinson’s disease: a prospective blinded study. Lancet Neurol 7(5):417–424. doi:10.1016/S1474-4422(08)70067-X

    Article  PubMed  Google Scholar 

  30. Walter U, Skoloudik D (2014) Transcranial sonography (TCS) of brain parenchyma in movement disorders: quality standards, diagnostic applications and novel technologies. Ultraschall Med 35(4):322–331. doi:10.1055/s-0033-1356415

    Article  CAS  PubMed  Google Scholar 

  31. Behnke S, Hellwig D, Burmann J, Runkel A, Farmakis G, Kirsch CM, Fassbender K, Becker G, Dillmann U, Spiegel J (2013) Evaluation of transcranial sonographic findings and MIBG cardiac scintigraphy in the diagnosis of idiopathic Parkinson’s disease. Parkinsonism Relat Disord 19(11):995–999. doi:10.1016/j.parkreldis.2013.06.019

    Article  PubMed  Google Scholar 

  32. Fujita H, Suzuki K, Numao A, Watanabe Y, Uchiyama T, Miyamoto T, Miyamoto M, Hirata K (2016) Usefulness of cardiac MIBG scintigraphy, olfactory testing and substantia nigra hyperechogenicity as additional diagnostic markers for distinguishing between Parkinson’s disease and atypical Parkinsonian syndromes. PLOS ONE 11(11):e0165869. doi:10.1371/journal.pone.0165869

    Article  PubMed  PubMed Central  Google Scholar 

  33. Skoloudik D, Fadrna T, Bartova P, Langova K, Ressner P, Zapletalova O, Hlustik P, Herzig R, Kannovsky P (2007) Reproducibility of sonographic measurement of the substantia nigra. Ultrasound Med Biol 33(9):1347–1352. doi:10.1016/j.ultrasmedbio.2007.03.013

    Article  PubMed  Google Scholar 

  34. van de Loo S, Walter U, Behnke S, Hagenah J, Lorenz M, Sitzer M, Hilker R, Berg D (2010) Reproducibility and diagnostic accuracy of substantia nigra sonography for the diagnosis of Parkinson’s disease. J Neurol Neurosurg Psychiatr 81(10):1087–1092. doi:10.1136/jnnp.2009.196352

    Article  PubMed  Google Scholar 

  35. Berg D (2011) Hyperechogenicity of the substantia nigra: pitfalls in assessment and specificity for Parkinson’s disease. J Neural Transm (Vienna) 118(3):453–461. doi:10.1007/s00702-010-0469-5

    Article  CAS  Google Scholar 

  36. Walter U (2013) How to measure substantia nigra hyperechogenicity in Parkinson disease: detailed guide with video. J Ultrasound Med 32(10):1837–1843. doi:10.7863/ultra.32.10.1837

    Article  PubMed  Google Scholar 

  37. Skoloudik D, Jelinkova M, Blahuta J, Cermak P, Soukup T, Bartova P, Langova K, Herzig R (2014) Transcranial sonography of the substantia nigra: digital image analysis. AJNR Am J Neuroradiol 35(12):2273–2278. doi:10.3174/ajnr.A4049

    Article  CAS  PubMed  Google Scholar 

  38. Mo SJ, Linder J, Forsgren L, Larsson A, Johansson L, Riklund K (2010) Pre- and postsynaptic dopamine SPECT in the early phase of idiopathic parkinsonism: a population-based study. Eur J Nucl Med Mol Imaging 37(11):2154–2164. doi:10.1007/s00259-010-1520-3

    Article  PubMed  Google Scholar 

  39. Eckert T, Barnes A, Dhawan V, Frucht S, Gordon MF, Feigin AS, Eidelberg D (2005) FDG PET in the differential diagnosis of parkinsonian disorders. Neuroimage 26(3):912–921. doi:10.1016/j.neuroimage.2005.03.012

    Article  PubMed  Google Scholar 

  40. Hellwig S, Amtage F, Kreft A, Buchert R, Winz OH, Vach W, Spehl TS, Rijntjes M, Hellwig B, Weiller C, Winkler C, Weber WA, Tuscher O, Meyer PT (2012) [(1)(8)F]FDG-PET is superior to [(1)(2)(3)I]IBZM-SPECT for the differential diagnosis of Parkinsonism. Neurology 79(13):1314–1322. doi:10.1212/WNL.0b013e31826c1b0a

    Article  CAS  PubMed  Google Scholar 

  41. Meyer PT, Amtage F, Hellwig S (2014) Differential diagnostics of Parkinson’s disease with nuclear medicine procedures. Nervenarzt 85(6):680–689. doi:10.1007/s00115-013-3995-1

    Article  CAS  PubMed  Google Scholar 

  42. Nagayama H, Hamamoto M, Ueda M, Nagashima J, Katayama Y (2005) Reliability of MIBG myocardial scintigraphy in the diagnosis of Parkinson’s disease. J Neurol Neurosurg Psychiatr 76(2):249–251. doi:10.1136/jnnp.2004.037028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Herting B, Bietenbeck S, Scholz K, Hahner A, Hummel T, Reichmann H (2008) Olfactory dysfunction in Parkinson’s disease: its role as a new cardinal sign in early and differential diagnosis. Nervenarzt 79(2):175–184. doi:10.1007/s00115-007-2326-9

    Article  CAS  PubMed  Google Scholar 

  44. Sauerbier A, Qamar MA, Rajah T, Chaudhuri KR (2016) New concepts in the pathogenesis and presentation of Parkinson’s disease. Clin Med (Lond) 16(4):365–370. doi:10.7861/clinmedicine.16-4-365

    Article  Google Scholar 

  45. Doppler K, Volkmann J, Sommer C (2016) Skin biopsies in the differential diagnosis of parkinsonism: are we ready for simplified protocols? Brain 139(Pt 1):e5. doi:10.1093/brain/awv251

    Article  PubMed  Google Scholar 

  46. van Uem JM, Isaacs T, Lewin A, Bresolin E, Salkovic D, Espay AJ, Matthews H, Maetzler W (2016) A viewpoint on wearable technology-enabled measurement of wellbeing and health-related quality of life in Parkinson’s disease. J Parkinsons Dis 6(2):279–287. doi:10.3233/JPD-150740

    Article  PubMed  PubMed Central  Google Scholar 

  47. Hallett M, Rothwell J (2011) Milestones in clinical neurophysiology. Mov Disord 26(6):958–967. doi:10.1002/mds.23572

    Article  PubMed  PubMed Central  Google Scholar 

  48. van Uem JM, Maier KS, Hucker S, Scheck O, Hobert MA, Santos AT, Fagerbakke O, Larsen F, Ferreira JJ, Maetzler W (2016) Twelve-week sensor assessment in Parkinson’s disease: Impact on quality of life. Mov Disord 31(9):1337–1338. doi:10.1002/mds.26676

    Article  PubMed  Google Scholar 

  49. Martinez-Martin P, Rodriguez-Blazquez C, Frades-Payo B (2008) Specific patient-reported outcome measures for Parkinson’s disease: analysis and applications. Expert Rev Pharmacoecon Outcomes Res 8(4):401–418. doi:10.1586/14737167.8.4.401

    Article  PubMed  Google Scholar 

  50. Vitale C, Pellecchia MT, Grossi D, Fragassi N, Cuomo T, Di Maio L, Barone P (2001) Unawareness of dyskinesias in Parkinson’s and Huntington’s diseases. Neurol Sci 22(1):105–106

    Article  CAS  PubMed  Google Scholar 

  51. Parveen S (2016) Comparison of self and proxy ratings for motor performance of individuals with Parkinson disease. Brain Cogn 103:62–69. doi:10.1016/j.bandc.2016.01.006

    Article  PubMed  Google Scholar 

  52. Louis ED (2015) More time with tremor: the experience of essential tremor versus Parkinson’s disease patients. Mov Disord Clin Pract 3(1):36–42. doi:10.1002/mdc3.12207

    Article  PubMed  PubMed Central  Google Scholar 

  53. Zach H, Dirkx M, Pasman JW, Bloem BR, Helmich RC (2016) The patient’s perspective: the effect of levodopa on Parkinson symptoms. Parkinsonism Relat Disord. doi:10.1016/j.parkreldis.2016.11.015

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Maetzler.

Ethics declarations

Interessenkonflikt

U. Walter, H. Zach, I. Liepelt-Scarfone und W. Maetzler geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Walter, U., Zach, H., Liepelt-Scarfone, I. et al. Hilfreiche Zusatzuntersuchungen beim idiopathischen Parkinson-Syndrom. Nervenarzt 88, 365–372 (2017). https://doi.org/10.1007/s00115-017-0289-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00115-017-0289-z

Schlüsselwörter

Keywords

Navigation