Skip to main content
Log in

Personalisierte Gliomtherapie

Personalized therapy for gliomas

  • Leitthema
  • Published:
Der Nervenarzt Aims and scope Submit manuscript

Zusammenfassung

Aktuell bei Patienten mit Gliomen eingesetzte Therapien beginnen molekulare Faktoren einzubeziehen, sind aber weiterhin wenig individualisiert. Übernommen in die klinische Anwendung und Leitlinien sind bisher in erster Linie genetische und molekulare Marker zur Diagnose bzw. Klassifikation der Gliome und genetische Marker zur Prognoseabschätzung. Die Methylierung des Promoters der O6-Methyl-Guanin-Methyl-Transferase (MGMT) und die Kodeletion von 1p und 19q (1p/19q codel) wurden als Merkmale zur Therapiestratifizierung, d. h. als prädiktive Faktoren, weiterentwickelt und molekulare Marker wie die trunkierte, aber autoaktive Form des Epidermal-growth-factor-Rezeptors (EGFRvIII) und die R132H-Mutation der Isozitratdehydrogenase-1 (IDH-1) in bereits laufenden immuntherapeutischen Studien zur Entwicklung zielgerichteter Therapien eingesetzt. Die Integration funktioneller bildgebender Verfahren in das Therapiemonitoring sowie die Entwicklung standardisierter Bewertungskriterien verbessern zunehmend die Möglichkeiten, bildgebende Biomarker zur Therapiesteuerung einzusetzen. Auswirkungen dieser Entwicklungen sind bereits jetzt in einer spürbar besseren Prognosestratifizierung von Patienten mit Gliomen sowie – bei erhaltener Lebensqualität – in deutlichen Gewinnen an Überlebenszeit in einigen Gliomsubgruppen zu spüren. Bei einer ähnlich dynamischen Weiterentwicklung ist in Kürze eine allgemein akzeptierte deutlich differenziertere Klassifikation der Gliome anhand molekularer Kriterien zu erwarten, die eine rationale personalisierte Therapiesteuerung mit früher Evaluation des Ansprechens deutlich vereinfachen wird.

Summary

Current therapies for patients with malignant gliomas are starting to integrate molecular factors and age. Nonetheless, these therapies are still not sufficiently individualized. Some positive examples of transfer from basic science to clinical application are currently integrated into the standard treatment and guidelines. These are mainly genetic and other molecular factors that improve diagnosis and classification of gliomas and markers supporting prognostication. Examples for predictive biomarkers are methylation of the O-6-methylguanine-DNA methyltransferase (MGMT) promoter and the codeletion of chromosome arms 1p and 19q (1p/19q codel). The autoactive, truncated form of epidermal growth factor receptor (EGFRvIII) and the R132H mutation of isocitrate dehydrogenase 1 (IDH-1) are used as targets in currently running immunotherapeutic, targeted trials. Integration of functional imaging parameters into the monitoring and development of uniform assessment criteria improve the ability to evaluate therapy response and implement imaging biomarkers to guide therapies. As a result of the current efforts there are better classified prognostic groups and improved survival times with maintained functional and quality of life parameters in some glioma subgroups. Given the current dynamics, an improved, better differentiated classification of brain tumors including molecular parameters as well as more rational precise guiding of therapies with early, uniform response assessment is expected in the near future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Abb. 1
Abb. 2

Literatur

  1. Baumert BG, Mason WP, Ryan G et al (2013) Temozolomide chemotherapy versus radiotherapy in molecularly characterized (1p Loss) low-grade glioma: a randomized phase III intergroup study by the EORTC/NCIC-CTG/TROG/MRC-CTU (EORTC 22033–26033). J Clin Oncol 31:suppl;abstr 2007

    Google Scholar 

  2. Buckner JC, Pugh SL, Shaw EG et al (2014) Phase III study of radiation therapy (RT) with or without procarbazine, CCNU, and vincristine (PCV) in low-grade glioma: RTOG 9802 with Alliance, ECOG, and SWOG. J Clin Oncol 32:5s (suppl; abstr 2000)

    Article  Google Scholar 

  3. Cairncross G, Wang M, Shaw E et al (2013) Phase III trial of chemoradiotherapy for anaplastic oligodendroglioma: long-term results of RTOG 9402. J Clin Oncol 31(3):337–343

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Choi C, Ganji S, Hulsey K et al (2013) A comparative study of short- and long-TE (1)H MRS at 3 T for in vivo detection of 2-hydroxyglutarate in brain tumors. NMR Biomed 26(10):1242–1250

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Druker BJ, Sawyers CL, Kantarjian H et al (2001) Activity of a specific inhibitor of the BCR-ABL tyrosine kinase in the blast crisis of chronic myeloid leukemia and acute lymphoblastic leukemia with the Philadelphia chromosome. New Engl J Med 344(14):1038–1042

    Article  CAS  PubMed  Google Scholar 

  6. Ducray F, El Hallani S, Idbaih A (2009) Diagnostic and prognostic markers in gliomas. Curr Opin Oncol 21:537–542

    Article  CAS  PubMed  Google Scholar 

  7. Hartmann C, Hentschel B, Wick W et al (2010) Patients with IDH1 wild type anaplastic astrocytomas exhibit worse prognosis than IDH1-mutated glioblastomas, and IDH1 mutation status accounts for the unfavorable prognostic effect of higher age: implications for classification of gliomas. Acta Neuropathol 120(6):707–718

    Article  PubMed  Google Scholar 

  8. Hegi ME et al (2005) MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med 352(10):997–1003

    Article  CAS  PubMed  Google Scholar 

  9. Huse JT et al (2011) High frequency of IDH-1 mutation links glioneuronal tumors with neuropil-like islands to diffuse astrocytomas. Acta Neuropathol 122(3):367–369

    Article  PubMed Central  PubMed  Google Scholar 

  10. Hutterer M et al (2014) Current standards and new concepts in MRI and PET response assessment of antiangiogenic therapies in high-grade glioma patients. Neuro Oncol pii: nou322

    Google Scholar 

  11. Idbaih A, Marie Y, Pierron G et al (2005) Two types of chromosome 1p losses with opposite significance in gliomas. Ann Neurol 58(3):483–487

    Article  CAS  PubMed  Google Scholar 

  12. Kleber S, Sancho-Martinez I, Wiestler B et al (2008) Yes and PI3K bind CD95 to signal invasion of glioblastoma. Cancer Cell 13:235–248

    Article  CAS  PubMed  Google Scholar 

  13. Koelsche C, Sahm F, Capper D et al (2013) Distribution of TERT promoter mutations in pediatric and adult tumors of the nervous system. Acta Neuropathol 126(6):907–915

    Article  CAS  PubMed  Google Scholar 

  14. Malmstrom A, Gronberg BH, Marosi C et al (2012) Temozolomide versus standard 6-week radiotherapy versus hypofractionated radiotherapy in patients older than 60 years with glioblastoma: the Nordic randomised, phase 3 trial. Lancet Oncol 13(9):916–926

    Article  PubMed  Google Scholar 

  15. Patel AP, Tirosh I, Trombetta JJ et al (2014) Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma. Science 344(6190):1396–1401

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Riemenschneider MJ, Louis DN, Weller M, Hau P (2013) Refined brain tumor diagnostics and stratified therapies: the requirement for a multidisciplinary approach. Acta Neuropathol 126(1):21–37

    Article  PubMed  Google Scholar 

  17. Schumacher T, Bunse L, Pusch S et al (2014) A vaccine targeting mutant IDH1 induces antitumour immunity. Nature 512(7514):324–327

    Article  CAS  PubMed  Google Scholar 

  18. Stupp R, Mason WP, Bent MJ van den et al (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352(10):987–996

    Article  CAS  PubMed  Google Scholar 

  19. Taal W, Oosterkamp HM, Walenkamp AM et al (2014) Single-agent bevacizumab or lomustine versus a combination of bevacizumab plus lomustine in patients with recurrent glioblastoma (BELOB trial): a randomised controlled phase 2 trial. Lancet Oncol 15:943–953

    Article  CAS  PubMed  Google Scholar 

  20. Bent MJ van den, Brandes AA, Taphoorn MJ et al (2013) Adjuvant procarbazine, lomustine, and vincristine chemotherapy in newly diagnosed anaplastic oligodendroglioma: long-term follow-up of EORTC brain tumor group study 26951. J Clin Oncol 31(3):344–350

    Article  PubMed  Google Scholar 

  21. Weller M, Bent M van den, Hopkins K et al (2014) EANO guideline for the diagnosis and treatment of anaplastic gliomas and glioblastoma. Lancet Oncol 15(9):e395–e403

    Article  PubMed  Google Scholar 

  22. Weller M, Tabatabai G, Kästner B et al (2015) MGMT promoter methylation is a strong prognostic biomarker for benefit from dose-intensified temozolomide rechallenge in progressive glioblastoma: the DIRECTOR trial. Clin Cancer Res (Epub ahead of print)

  23. Wick W, Platten M, Meisner C et al (2012) Temozolomide chemotherapy alone versus radiotherapy alone for malignant astrocytoma in the elderly: the NOA-08 randomised, phase 3 trial. Lancet Oncol 13(7):707–715

    Article  CAS  PubMed  Google Scholar 

  24. Wick W, Weller M, Bent M van den et al (2014) MGMT testing in neurooncology – a paradigm for prospects and challenges of biomarker-based treatment decisions. Nat Rev Neurol 10:372–385

    Article  CAS  PubMed  Google Scholar 

  25. Wick W, Fricke H, Junge K et al (2014) A phase II, randomized, study of weekly APG101+ reirradiation versus reirradiation in progressive glioblastoma. Clin Cancer Res 20(24):6304–6313

    Article  CAS  PubMed  Google Scholar 

  26. Wiestler B et al (2014) Integrated DNA methylation and copy-number profiling identify three clinically and biologically relevant groups of anaplastic glioma. Acta Neuropathol 128(4):561–571

    Article  CAS  PubMed  Google Scholar 

  27. Wiestler B, Capper D, Hovestadt V et al (2014) Assessing CpG island methylator phenotype, 1p/19q codeletion, and MGMT promoter methylation from epigenome-wide data in the biomarker cohort of the NOA-04 trial. Neuro Oncol 16(12):1630–1638

    Article  PubMed  Google Scholar 

  28. Wiestler B, Capper D, Holland-Letz T et al (2013) ATRX loss refines the classification of anaplastic gliomas and identifies a subgroup of IDH mutant astrocytic tumors with better prognosis. Acta Neuropathol 126:443–445

    Article  CAS  PubMed  Google Scholar 

Download references

Einhaltung ethischer Richtlinien

Interessenskonflikt. W. Wick ist in Advisory Boards und als Referent für Roche tätig. Er ist Inhaber von Patenten zur IDH-Immuntherapie und Immunhistochemie und zur molekularen Diagnostik bei APG101. Er ist außerdem Studienleiter der im Text erwähnten Studien: APG101_CD002, GAPVAC und NOA-8. P. Hau ist als Referent für Roche, Medac und TEVA tätig und erhält Beraterhonorare von Roche, Medac und Novocure. Reisekosten wurden von Roche, Medac, TEVA und Novocure übernommen.

Dieser Beitrag beinhaltet keine Studien an Menschen oder Tieren.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Wick.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wick, W., Hau, P. Personalisierte Gliomtherapie. Nervenarzt 86, 692–700 (2015). https://doi.org/10.1007/s00115-014-4226-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00115-014-4226-0

Schlüsselwörter

Keywords

Navigation