Skip to main content
Log in

Tiefe Hirnstimulation mittels simultaner stereotaktischer Elektrodenplatzierung

Eine Alternative zur konventionellen funktionellen Stereotaxie?

Deep brain stimulation using simultaneous stereotactic electrode placement

An alternative to conventional functional stereotaxy?

  • Originalien
  • Published:
Der Nervenarzt Aims and scope Submit manuscript

Zusammenfassung

Hintergrund

Die tiefe Hirnstimulation ist eine zuverlässige Methode, Bewegungsstörungen (z. B. idiopathischer Morbus Parkinson) erfolgreich behandeln zu können. Grundlage für die Operationsplanung und -umsetzung ist das stereotaktische Prinzip. Mit der sog. Starfix®-Plattform kommt erstmals ein Stereotaxierahmen zur Anwendung, der den Anforderungen einer individualisierten stereotaktischen Therapie gerecht wird.

Ziel der Arbeit

Anliegen der vorgestellten Studie ist der Vergleich zwischen konventioneller (Gruppe 1, 31 Patienten) und patientenspezifischer (Gruppe 2, 29 Patienten) Stereotaxie anhand einer retrospektiven Betrachtung.

Material und Methode

Diese Betrachtung umfasst die klinischen Parametern [UPDRS(III)] und die Medikation sowohl präoperativ als auch postoperativ nach 4 und 12 Wochen bzw. 6 und 12 Monaten.

Ergebnisse

Im Ergebnis der Studie sind beide Verfahren hinsichtlich der erreichten klinischen Verbesserung [UPDRS(III) Gruppe 1: 69,6 % vs. Gruppe 2: 72,4 %] vergleichbar und führen beide Verfahren bez. der Medikation zu einer signifikanten Reduktion der L-Dopa- und L-Dopa-Äquivalenzdosis zu allen Zeitintervallen. Darüber hinaus bestehen verfahrensimmanente Vorteile der verwendeten Stereotaxieplattform in einer simultanen Positionierung der Stimulationselektroden und einer deutlichen Operationszeitverkürzung.

Diskussion

In der Zusammenfassung sind beide stereotaktischen Verfahren zuverlässig hinsichtlich der Sicherheit bei der Platzierung von Stimulationselektroden als auch bez. des erreichten Stimulationseffektes. Die logistische Entkopplung von Operationsplanung und operativer Therapie unterstreicht die Vorteile eines individualisierten stereotaktischen Vorgehens.

Summary

Background

Deep brain stimulation (DBS) has become a reliable method in the treatment of movement disorders, e.g. idiopathic Parkinson’s disease (IPD) and is technically based on stereotaxy. The Starfix® platform is a new type of stereotactic frame that allows an individualized and patient-optimized therapeutic regimen in IPD.

Objectives

The aim of this study was to retrospectively compare the outcomes of IPD patients who underwent surgery with the use of conventional stereotactic frames (31 patients) to those who underwent implantation of DBS with the use of Starfix® frames (29 patients).

Material and methods

Surgery time, the unified Parkinson’s disease rating scale III (UPDRS/III) score, L-dopa and L-dopa equivalent doses (LED) were compared prior to surgery as well as 4 weeks, 12 weeks, 6 months and 1 year postoperatively.

Results

The IPD-related symptoms improved significantly in both groups with respect to the UPDRS III score (conventional 69.6 % vs. 72.4 % Starfix®). After surgery significant reductions of L-dopa and LED were seen in both groups. Inherent advantages of the Starfix® platform included simultaneous positioning of the stimulating electrodes and a significant reduction in surgical time.

Conclusion

In summary, both stereotactic procedures are reliable and safe procedures for the placement of stimulating electrodes as well as the stimulation effect achieved. The logistical uncoupling of presurgical planning from surgical therapy emphasizes the benefits of the individualized stereotactic procedure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1

Literatur

  1. Alp MS, Dujovny M, Misra M et al (1998) Head registration techniques for image-guided surgery. Neurol Res 20(1):31–37

    CAS  PubMed  Google Scholar 

  2. Amirnovin R, Williams ZM, Cosgrove GR et al (2006) Experience with microelectrode guided subthalamic nucleus deep brain stimulation. Neurosurgery 58(1 Suppl):ONS96–ONS102 (discussion ONS96–ONS102). doi:10.1227/01.NEU.0000192690.45680.C2

    Article  PubMed  Google Scholar 

  3. DeLong MR, Wichmann T (2001) Deep brain stimulation for Parkinson’s disease. Ann Neurol 49(2):142–143

    Article  CAS  PubMed  Google Scholar 

  4. Dötterl A, Trappe AE, Al-Hami S (1999) Optimized visualization of contrast medium dependent differences in CT/MRI scans by RGB transformation. Minim Invasive Neurosurg 42(4):194–197. doi:10.1055/s-2008-1053397

    Article  PubMed  Google Scholar 

  5. Dowsey-Limousin P, Fraix V, Benabid A et al (2001) Deep brain stimulation in Parkinson’s disease. Funct Neurol 16(1):67–71

    CAS  PubMed  Google Scholar 

  6. Dzindolet MT, Peterson SA, Pomranky RA et al (2003) The role of trust in automation reliance. Int J Hum Comput Stud 58(6):697–718. doi:10.1016/S1071-5819(03)00038-7

    Article  Google Scholar 

  7. Erola T, Heikkinen ER, Haapaniemi T et al (2006) Efficacy of bilateral subthalamic nucleus (STN) stimulation in Parkinson’s disease. Acta Neurochir (Wien) 148(4):389–394. doi:10.1007/s00701-005-0662-8

    Google Scholar 

  8. Fehér G, Balás I, Komoly S et al (2010) A kétoldali subthalamicus stimuláció hatékonysága az antiparkinson gyógyszereles változtatásának tükrében (Analysis of antiparkinsonian drug reduction after bilateral subthalamic deep brain stimulation). Ideggyogy Sz 63(9–10):314–319

  9. Fitzpatrick JM, Konrad PE, Nickele C et al (2005) Accuracy of customized miniature stereotactic platforms. Stereotact Funct Neurosurg 83(1):25–31. doi:10.1159/000085023

    Article  PubMed  Google Scholar 

  10. Hunsche S, Sauner D, Maarouf M et al (2007) Combined x-ray and magnetic resonance imaging facility: application to image-guided stereotactic and functional neurosurgery. Neurosurgery 60(4 Suppl 2):352–360 (discussion 360–361). doi:10.1227/01.NEU.0000255423.24173.42

    Article  PubMed  Google Scholar 

  11. Hutchison WD, Allan RJ, Opitz H et al (1998) Neurophysiological identification of the subthalamic nucleus in surgery for Parkinson’s disease. Ann Neurol 44(4):622–628. doi:10.1002/ana.410440407

    Article  CAS  PubMed  Google Scholar 

  12. Kleiner-Fisman G, Herzog J, Fisman DN et al (2006) Subthalamic nucleus deep brain stimulation: summary and meta-analysis of outcomes. Mov Disord 21(Suppl 14):S290–S304. doi:10.1002/mds.20962

    Article  PubMed  Google Scholar 

  13. Konrad PE, Neimat JS, Yu H et al (2011) Customized, miniature rapid-prototype stereotactic frames for use in deep brain stimulator surgery: initial clinical methodology and experience from 263 patients from 2002 to 2008. Stereotact Funct Neurosurg 89(1):34–41

    Article  PubMed Central  PubMed  Google Scholar 

  14. Krack P, Batir A, Blercom N van et al (2003) Five-year follow-up of bilateral stimulation of the subthalamic nucleus in advanced Parkinson’s disease. N Engl J Med 349(20):1925–1934. doi:10.1056/NEJMoa035275

    Article  CAS  PubMed  Google Scholar 

  15. Lo Bour J, Contarino MF, Foncke, Elisabeth MJ et al (2010) Long-term experience with intraoperative microrecording during DBS neurosurgery in STN and GPi. Acta Neurochir (Wien) 152(12):2069–2077. doi:10.1007/s00701-010-0835-y

    Google Scholar 

  16. Nimsky C, Ganslandt O, Cerny S et al (2000) Quantification of, visualization of, and compensation for brain shift using intraoperative magnetic resonance imaging. Neurosurgery 47(5):1070–1079 (discussion 1079–1080)

    Article  CAS  PubMed  Google Scholar 

  17. Nimsky C, Ganslandt O, Hastreiter P et al (2001) Intraoperative compensation for brain shift. Surg Neurol 56(6):357–364 (discussion 364–365)

    Article  CAS  PubMed  Google Scholar 

  18. Nunta-Aree S, Sitthinamsuwan B, Boonyapisit K et al (2010) SW2-year outcomes of subthalamic deep brain stimulation for idiopathic Parkinson’s disease. J Med Assoc Thai 93(5):529–540

    PubMed  Google Scholar 

  19. Paek SH, Lee J, Kim H et al (2011) Electrode position and the clinical outcome after bilateral subthalamic nucleus stimulation. J Korean Med Sci 26(10):1344–1355. doi:10.3346/jkms.2011.26.10.1344

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Parasuraman R, Sheridan TB, Wickens CD (2000) A model for types and levels of human interaction with automation. IEEE Trans Syst Man Cybern A Syst Hum 30(3):286–297

    Article  CAS  PubMed  Google Scholar 

  21. Reck C, Maarouf M, Wojtecki L et al (2012) Clinical outcome of subthalamic stimulation in Parkinson’s disease is improved by intraoperative multiple trajectories microelectrode recording. J Neurol Surg A Cent Eur Neurosurg 73(6):377–386. doi:10.1055/s-0032-1326957

    Article  PubMed  Google Scholar 

  22. Sung VW, Watts RL, Schrandt CJ et al (2013) The relationship between clinical phenotype and early staged bilateral deep brain stimulation in Parkinson disease. J Neurosurg 119(6):1530–1536. doi:10.3171/2013.8.JNS122025

    Article  PubMed Central  PubMed  Google Scholar 

  23. Tir M, Devos D, Blond S et al (2007) Exhaustive, one-year follow-up of subthalamic nucleus deep brain stimulation in a large, single-center cohort of parkinsonian patients. Neurosurgery 61(2):297–304 (discussion 304–305). doi:10.1227/01.NEU.0000285347.50028.B9

    Article  PubMed  Google Scholar 

  24. Tittgemeyer M, Wollny G, Kruggel F (2002) Visualising deformation fields computed by non-linear image registration. Comput Visual Sci 5(1):45–51. doi:10.1007/s00791-002-0086-4

    Article  Google Scholar 

  25. Tykocki T, Szalecki K, Koziara H et al (2013) Quality of life and depressive symptoms in Parkinson’s disease after subthalamic deep brain stimulation: a 2-year follow-up study. Turk Neurosurg 23(3):379–384. doi:10.5137/1019-5149.JTN.7184-12.1

    PubMed  Google Scholar 

  26. Vercruysse S, Vandenberghe W, Münks L et al (2014) Effects of deep brain stimulation of the subthalamic nucleus on freezing of gait in Parkinson’s disease: a prospective controlled study. J Neurol Neurosurg Psychiatry. doi:10.1136/jnnp-2013-306336

  27. Vesper J, Haak S, Ostertag C et al (2007) Subthalamic nucleus deep brain stimulation in elderly patients – analysis of outcome and complications. BMC Neurol 7:7. doi:10.1186/1471-2377-7-7

    Article  PubMed Central  PubMed  Google Scholar 

  28. Volkmann J, Allert N, Voges J et al (2001) Safety and efficacy of pallidal or subthalamic nucleus stimulation in advanced PD. Neurology 56(4):548–551

    Article  CAS  PubMed  Google Scholar 

  29. Weaver FM, Stroupe KT, Cao L et al (2012) Parkinson’s disease medication use and costs following deep brain stimulation. Mov Disord 27(11):1398–1403. doi:10.1002/mds.25164

    Article  PubMed  Google Scholar 

  30. Weise LM, Seifried C, Eibach S et al (2013) Correlation of active contact positions with the electrophysiological and anatomical subdivisions of the subthalamic nucleus in deep brain stimulation. Stereotact Funct Neurosurg 91(5):298–305. doi:10.1159/000345259

    Article  PubMed  Google Scholar 

  31. Winkler D, Tittgemeyer M, Schwarz J et al (2005) The first evaluation of brain shift during functional neurosurgery by deformation field analysis. J Neurol Neurosurg Psychiatry 76(8):1161–1163. doi:10.1136/jnnp.2004.047373

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Einhaltung ethischer Richtlinien

Interessenkonflikt. C. Matzke, N. Hammer, D. Weise, D. Lindner, D. Fritzsch, J. Classen, J. Meixensberger und D. Winkler geben an, dass kein Interessenkonflikt besteht. Dieser Beitrag beinhaltet keine Studien an Menschen oder Tieren.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Winkler.

Additional information

C. Matzke und N. Hammer teilen sich die Erstautorenschaft.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matzke, C., Hammer, N., Weise, D. et al. Tiefe Hirnstimulation mittels simultaner stereotaktischer Elektrodenplatzierung. Nervenarzt 85, 1561–1568 (2014). https://doi.org/10.1007/s00115-014-4214-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00115-014-4214-4

Schlüsselwörter

Keywords

Navigation