Skip to main content
Log in

Oxygen isotope fractionation between bird bone phosphate and drinking water

  • Original Paper
  • Published:
The Science of Nature Aims and scope Submit manuscript

Abstract

Oxygen isotope compositions of bone phosphate (δ18Op) were measured in broiler chickens reared in 21 farms worldwide characterized by contrasted latitudes and local climates. These sedentary birds were raised during an approximately 3 to 4-month period, and local precipitation was the ultimate source of their drinking water. This sampling strategy allowed the relationship to be determined between the bone phosphate δ18Op values (from 9.8 to 22.5‰ V-SMOW) and the local rainfall δ18Ow values estimated from nearby IAEA/WMO stations (from −16.0 to −1.0‰ V-SMOW). Linear least square fitting of data provided the following isotopic fractionation equation: δ18Ow = 1.119 (±0.040) δ18Op − 24.222 (±0.644); R 2 = 0.98. The δ18Op–δ18Ow couples of five extant mallard ducks, a common buzzard, a European herring gull, a common ostrich, and a greater rhea fall within the predicted range of the equation, indicating that the relationship established for extant chickens can also be applied to birds of various ecologies and body masses. Applied to published oxygen isotope compositions of Miocene and Pliocene penguins from Peru, this new equation computes estimates of local seawater similar to those previously calculated. Applied to the basal bird Confuciusornis from the Early Cretaceous of Northeastern China, our equation gives a slightly higher δ18Ow value compared to the previously estimated one, possibly as a result of lower body temperature. These data indicate that caution should be exercised when the relationship estimated for modern birds is applied to their basal counterparts that likely had a metabolism intermediate between that of their theropod dinosaur ancestors and that of advanced ornithurines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Amiot R, Lécuyer C, Buffetaut E et al (2004) Latitudinal temperature gradient during the Cretaceous Upper Campanian-Middle Maastrichtian: δ18O record of continental vertebrates. Earth Planet Sci Lett 226:255–272. doi:10.1016/j.epsl.2004.07.015

    Article  CAS  Google Scholar 

  • Amiot R, Lécuyer C, Escarguel G et al (2007) Oxygen isotope fractionation between crocodilian phosphate and water. Palaeogeogr Palaeoclimatol Palaeoecol 243:412–420. doi:10.1016/j.palaeo.2006.08.013

    Article  Google Scholar 

  • Amiot R, Göhlich UB, Lécuyer C et al (2008) Oxygen isotope compositions of phosphate from Middle Miocene-Early Pliocene marine vertebrates of Peru. Palaeogeogr Palaeoclimatol Palaeoecol 264:85–92. doi:10.1016/j.palaeo.2008.04.001

    Article  Google Scholar 

  • Amiot R, Buffetaut E, Lécuyer C et al (2010) Oxygen isotope evidence for semi-aquatic habits among spinosaurid theropods. Geology 38:139–142. doi:10.1130/G30402.1

    Article  CAS  Google Scholar 

  • Amiot R, Wang X, Zhou Z et al (2011) Oxygen isotopes of East Asian dinosaurs reveal exceptionally cold Early Cretaceous climates. Proc Natl Acad Sci 108:5179–5183. doi:10.1073/pnas.1011369108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amiot R, Wang X, Zhou Z et al (2015) Environment and ecology of East Asian dinosaurs during the Early Cretaceous inferred from stable oxygen and carbon isotopes in apatite. J Asian Earth Sci 98:358–370

    Article  Google Scholar 

  • Barkan E, Luz B (2005) High precision measurements of 17O/16O and 18O/16O ratios in H2O. Rapid Commun Mass Spectrom 19:3737–3742. doi:10.1002/rcm.2250

    Article  CAS  PubMed  Google Scholar 

  • Barrick RE, Fischer AG, Showers WJ (1999) Oxygen isotopes from turtle bone: applications for terrestrial paleoclimates? PALAIOS 14:186–191. doi:10.2307/3515374

    Article  Google Scholar 

  • Bojar A-V, Guja O, Pelc A et al (2015) Bison bonasus skull from the Bihor Mountains, Romania: isotopic and morphological investigations. The Holocene 25:1134–1143. doi:10.1177/0959683615580202

    Article  Google Scholar 

  • Bojar A-V, Halas S, Bojar H-P, Chmiel S (2017) Stable isotope hydrology of precipitation and groundwater of a region with high continentality, South Carpathians, Romania. Carpathian J Earth Environ Sci 12:513–524

    Google Scholar 

  • Bowen GJ, Revenaugh J (2003) Interpolating the isotopic composition of modern meteoric precipitation. Water Resour Res 39:1299. doi:10.1029/2003WR002086

    Article  Google Scholar 

  • Brudevold F, Soremark R (1967) Chemistry of the mineral phase of enamel. In: Mills A (ed) Structural and chemical organization of teeth, vol 2. Elsevier, Amsterdam, pp 247–277

    Google Scholar 

  • Bryant DJ, Luz B, Froelich PN (1994) Oxygen isotopic composition of fossil horse tooth phosphate as a record of continental paleoclimate. Palaeogeogr Palaeoclimatol Palaeoecol 107:303–316. doi:10.1016/0031-0182(94)90102-3

    Article  Google Scholar 

  • Chenery C, Mueldner G, Evans J et al (2010) Strontium and stable isotope evidence for diet and mobility in Roman Gloucester, UK. J Archaeol Sci 37:150–163. doi:10.1016/j.jas.2009.09.025

    Article  Google Scholar 

  • Chinsamy A, Chiappe LM, Dodson P (1994) Growth rings in Mesozoic birds. Nature 368:196–197. doi:10.1038/368196a0

    Article  Google Scholar 

  • Chinsamy A, Chiappe LM, Dodson P (1995) Mesozoic avian bone microstructure: physiological implications. Paleobiology 21:561–574. doi:10.1017/S0094837300013543

    Article  Google Scholar 

  • Coplen TB, Huang R (2000) Stable hydrogen and oxygen isotope ratios for selected sites of the National Oceanic and Atmospheric Administration’s Atmospheric Integrated Research Monitoring Network (AIRMoN). US Geological Survey, Reston

    Google Scholar 

  • Cormie AB, Luz B, Schwarcz HP (1994) Relationship between the hydrogen and oxygen isotopes of deer bone and their use in the estimation of relative humidity. Geochim Cosmochim Acta 58:3439–3449. doi:10.1016/0016-7037(94)90097-3

    Article  CAS  Google Scholar 

  • Crowson RA, Showers WJ, Wright EK, Hoering TC (1991) Preparation of phosphate samples for oxygen isotope analysis. Anal Chem 63:2397–2400. doi:10.1021/ac00020a038

    Article  CAS  Google Scholar 

  • D’Angela D, Longinelli A (1990) Oxygen isotopes in living mammal’s bone phosphate: further results. Chem Geol Isot Geosci Sect 86:75–82. doi:10.1016/0168-9622(90)90007-Y

    Article  Google Scholar 

  • Dansgaard W (1964) Stable isotopes in precipitation. Tellus 16:436–468. doi:10.1111/j.2153-3490.1964.tb00181.x

    Article  Google Scholar 

  • de Ricqlès A, Padian K, Horner JR et al (2003) Osteohistology of Confuciusornis sanctus (Theropoda: Aves). J Vertebr Paleontol 23:373–386. doi:10.1671/0272-4634(2003)023[0373:OOCSTA]2.0.CO;2

    Article  Google Scholar 

  • Dean JR, Eastwood WJ, Roberts N et al (2015) Tracking the hydro-climatic signal from lake to sediment: a field study from central Turkey. J Hydrol 529:608–621. doi:10.1016/j.jhydrol.2014.11.004

    Article  CAS  Google Scholar 

  • Fourel F, Martineau F, Lécuyer C et al (2011) 18O/16O ratio measurements of inorganic and organic materials by elemental analysis–pyrolysis–isotope ratio mass spectrometry continuous-flow techniques. Rapid Commun Mass Spectrom 25:2691–2696. doi:10.1002/rcm.5056

    Article  CAS  PubMed  Google Scholar 

  • Halas S, Skrzypek G, Meier-Augenstein W et al (2011) Inter-laboratory calibration of new silver orthophosphate comparison materials for the stable oxygen isotope analysis of phosphates. Rapid Commun Mass Spectrom 25:579–584. doi:10.1002/rcm.4892

    Article  CAS  PubMed  Google Scholar 

  • Hou L-H, Zhou Z, Gu Y, Zhang H (1995) Confuciusornis sanctus, a new Late Jurassic sauriurine bird from China. Chin Sci Bull 40:1545–1551

    Google Scholar 

  • IAEA/WMO (2016) Global network of isotopes in precipitation. The GNIP Database. Accessible at: http://www-naweb.iaea.org/napc/ih/index.html

  • Kadono H, Besch EL (1978) Telemetry measured body temperature of domestic fowl at various ambient temperatures. Poult Sci 57:1075–1080. doi:10.3382/ps.0571075

    Article  CAS  PubMed  Google Scholar 

  • Kennedy CD, Bowen GJ, Ehleringer JR (2011) Temporal variation of oxygen isotope ratios (δ18O) in drinking water: implications for specifying location of origin with human scalp hair. Forensic Sci Int 208:156–166. doi:10.1016/j.forsciint.2010.11.021

    Article  CAS  PubMed  Google Scholar 

  • Kohn MJ (1996) Predicting animal δ18O: accounting for diet and physiological adaptation. Geochim Cosmochim Acta 60:4811–4829. doi:10.1016/S0016-7037(96)00240-2

    Article  CAS  Google Scholar 

  • Kohn MJ, Schoeninger MJ, Valley JW (1996) Herbivore tooth oxygen isotope compositions: effects of diet and physiology. Geochim Cosmochim Acta 60:3889–3896. doi:10.1016/0016-7037(96)00248-7

    Article  CAS  Google Scholar 

  • Kolodny Y, Luz B, Navon O (1983) Oxygen isotope variations in phosphate of biogenic apatites, I. Fish bone apatite—rechecking the rules of the game. Earth Planet Sci Lett 64:398–404. doi:10.1016/0012-821X(83)90100-0

    Article  CAS  Google Scholar 

  • Kolodny Y, Luz B, Sander M, Clemens WA (1996) Dinosaur bones: fossils or pseudomorphs? The pitfalls of physiology reconstruction from apatitic fossils. Palaeogeogr Palaeoclimatol Palaeoecol 126:161–171

    Article  Google Scholar 

  • Lazzerini N, Lécuyer C, Amiot R et al (2016) Oxygen isotope fractionation between bird eggshell calcite and body water: application to fossil eggs from Lanzarote (Canary Islands). Sci Nat 103:81. doi:10.1007/s00114-016-1404-x

    Article  Google Scholar 

  • Lécuyer C, Grandjean P, O’Neil JR et al (1993) Thermal excursions in the ocean at the Cretaceous-tertiary boundary(northern Morocco): δ18O record of phosphatic fish debris. Palaeogeogr Palaeoclimatol Palaeoecol 105:235–243. doi:10.1016/0031-0182(93)90085-W

    Article  Google Scholar 

  • Lécuyer C, Grandjean P, Mazin J-M, de Buffrénil V (1999) Oxygen isotope compositions of reptile bones and teeth: a potential record of terrestrial and marine paleo-environments. In: Hoch E, Brantsen AK (eds). Copenhagen University, Geologisk Museum, Denmark, p 33

  • Lécuyer C, Amiot R, Touzeau A, Trotter J (2013) Calibration of the phosphate δ18O thermometer with carbonate–water oxygen isotope fractionation equations. Chem Geol 347:217–226. doi:10.1016/j.chemgeo.2013.03.008

    Article  Google Scholar 

  • Longinelli A (1984) Oxygen isotopes in mammal bone phosphate: a new tool for paleohydrological and paleoclimatological research? Geochim Cosmochim Acta 48:385–390. doi:10.1016/0016-7037(84)90259-X

    Article  CAS  Google Scholar 

  • Longinelli A, Nuti S (1973) Revised phosphate-water isotopic temperature scale. Earth Planet Sci Lett 19:373–376. doi:10.1016/0012-821X(73)90088-5

    Article  CAS  Google Scholar 

  • Luz B, Kolodny Y, Horowitz M (1984) Fractionation of oxygen isotopes between mammalian bone-phosphate and environmental drinking water. Geochim Cosmochim Acta 48:1689–1693. doi:10.1016/0016-7037(84)90338-7

    Article  CAS  Google Scholar 

  • Matsubaya O, Kawaraya H (2014) Hydrogen and oxygen isotopic characteristics of precipitation in coastal areas of Japan determined by observations for 23 years at Akita and for 1-2 years at other several localities. Geochem J 48:397–408. doi:10.2343/geochemj.2.0314

    Article  CAS  Google Scholar 

  • Padian K, de Ricqlès AJ, Horner JR (2001) Dinosaurian growth rates and bird origins. Nature 412:405–408. doi:10.1038/35086500

    Article  CAS  PubMed  Google Scholar 

  • Pesti GM, Amato SV, Minear LR (1985) Water consumption of broiler chickens under commercial conditions. Poult Sci 64:803–808. doi:10.3382/ps.0640803

    Article  CAS  PubMed  Google Scholar 

  • Prinzinger R, Pressmar A, Schleucher E (1991) Body temperature in birds. Comp Biochem Physiol A Physiol 99:499–506. doi:10.1016/0300-9629(91)90122-S

    Article  Google Scholar 

  • Rey K, Amiot R, Fourel F et al (2016) Global climate perturbations during the Permo-Triassic mass extinctions recorded by continental tetrapods from South Africa. Gondwana Res 37:384–396. doi:10.1016/j.gr.2015.09.008

    Article  CAS  Google Scholar 

  • de Ricqlès A, Padian K, Horner JR et al (2003) Osteohistology of Confuciusornis sanctus (Theropoda: Aves). J Vertebr Paleontol 23:373–386. doi:10.1671/0272-4634(2003)023[0373:OOCSTA]2.0.CO;2

    Article  Google Scholar 

  • Rink WJ, Schwarcz HP (1995) Tests for diagenesis in tooth enamel: ESR dating signals and carbonate contents. J Archaeol Sci 22:251–255

    Article  Google Scholar 

  • Royer A, Lécuyer C, Montuire S et al (2013) What does the oxygen isotope composition of rodent teeth record? Earth Planet Sci Lett 361:258–271. doi:10.1016/j.epsl.2012.09.058

    Article  CAS  Google Scholar 

  • Senter P (2006) Scapular orientation in theropods and basal birds, and the origin of flapping flight. Acta Palaeontol Pol 51:305–313

    Google Scholar 

  • Stanton-Thomas KJ, Carlson SJ (2004) Microscale δ18O and δ13C isotopic analysis of an ontogenetic series of the hadrosaurid dinosaur Edmontosaurus: implications for physiology and ecology. Palaeogeogr Palaeoclimatol Palaeoecol 206:257–287. doi:10.1016/j.palaeo.2004.01.007

    Article  Google Scholar 

  • Suarez CA, González LA, Ludvigson GA et al (2014) Multi-taxa isotopic investigation of paleohydrology in the Lower Cretaceous Cedar Mountain Formation, Eastern Utah, USA: deciphering effects of the Nevadaplano Plateau on regional climate. J Sediment Res 84:975–987. doi:10.2110/jsr.2014.76

    Article  CAS  Google Scholar 

  • Tarnowski CP, Ignelzi MA, Morris MD (2002) Mineralization of developing mouse calvaria as revealed by Raman microspectroscopy. J Bone Miner Res 17:1118–1126

    Article  PubMed  Google Scholar 

  • Tütken T (2014) Isotope compositions (C, O, Sr, Nd) of vertebrate fossils from the Middle Eocene oil shale of Messel, Germany: implications for their taphonomy and palaeoenvironment. Palaeogeogr Palaeoclimatol Palaeoecol 416:92–109

    Article  Google Scholar 

  • Van Kampen M, Mitchell BW, Siegel HS (1979) Thermoneutral zone of chickens as determined by measuring heat production, respiration rate, and electromyographic and electroencephalographic activity in light and dark environments and changing ambient temperatures. J Agric Sci 92:219–226. doi:10.1017/S0021859600060664

    Article  Google Scholar 

  • Vennemann TW, Hegner E, Cliff G, Benz GW (2001) Isotopic composition of recent shark teeth as a proxy for environmental conditions. Geochim Cosmochim Acta 65:1583–1599

    Article  CAS  Google Scholar 

  • Wang M, Wang X, Wang Y, Zhou Z (2016) A new basal bird from China with implications for morphological diversity in early birds. Sci Rep. doi:10.1038/srep19700

  • West GC (1965) Shivering and heat production in wild birds. Physiol Zool 38:111–120

    Article  Google Scholar 

  • Withers PC, Forbes RB, Hedrick MS (1987) Metabolic, water and thermal relations of the Chilean tinamou. Condor 89:424–426. doi:10.2307/1368498

    Article  Google Scholar 

  • Yates EB, Hamlin SN, McCann LH (1990) Geohydrology, water quality, and water budgets of Golden Gate Park and the Lake Merced area in the western part of San Francisco, California. US Geological Survey, Sacramento

    Google Scholar 

  • Yoshida N, Miyazaki N (1991) Oxygen isotope correlation of cetacean bone phosphate with environmental water. J Geophys Res Oceans 96:815–820. doi:10.1029/90JC01580

    Article  Google Scholar 

  • Zazzo A, Lécuyer C, Mariotti A (2004a) Experimentally-controlled carbon and oxygen isotope exchange between bioapatites and water under inorganic and microbially-mediated conditions. Geochim Cosmochim Acta 68:1–12

    Article  CAS  Google Scholar 

  • Zazzo A, Lécuyer C, Sheppard SMF et al (2004b) Diagenesis and the reconstruction of paleoenvironments: a method to restore original δ18O values of carbonate and phosphate from fossil tooth enamel. Geochim Cosmochim Acta 68:2245–2258. doi:10.1016/j.gca.2003.11.009

    Article  CAS  Google Scholar 

  • Zhang F, Hou L, Ouyang L (1998) Osteological microstructure of Confuciusornis: preliminary report. Vertebr Pal Asiat 36:126–135

    Google Scholar 

Download references

Acknowledgements

Dr. Stanislaw Halas, co-author of this study, passed away the 3rd may 2017. Our thoughts are with his family and colleagues during these difficult times. The authors would like to thank V. Paulet, P. Touzeau, M. Mathis, D. Viscaïno, I. Buffetaut, J. Barnoud, M. and W. Halverson, G. and C. von Hahn, A. and O. von Lilienfeld, S. and G. Caillard, J., and J. and P. Angst for providing chicken bones and D. Berthet from the Musée des Confluences, Lyon, France, for providing the bone samples of Buteo buteo (50.001696), Larus argentatus (50.001682), and Anas platyrhynchos (50.001681). We also would like to thank the five anonymous reviewers for their constructive comments that greatly helped to improve the manuscript. This study was supported by the CNRS PICS project no. PIC07193, the National Basic Research Program of China grant 2012CB821900 (RA), and the Institut Universitaire de France (CL).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Romain Amiot.

Additional information

Communicated by: Sven Thatje

Electronic supplementary material

ESM 1

(XLSX 19 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amiot, R., Angst, D., Legendre, S. et al. Oxygen isotope fractionation between bird bone phosphate and drinking water. Sci Nat 104, 47 (2017). https://doi.org/10.1007/s00114-017-1468-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00114-017-1468-2

Keywords

Navigation