Skip to main content

Advertisement

Log in

A new fossil from the mid-Paleocene of New Zealand reveals an unexpected diversity of world’s oldest penguins

  • Original Paper
  • Published:
The Science of Nature Aims and scope Submit manuscript

Abstract

We describe leg bones of a giant penguin from the mid-Paleocene Waipara Greensand of New Zealand. The specimens were found at the type locality of Waimanu manneringi and together with this species they constitute the oldest penguin fossils known to date. Tarsometatarsus dimensions indicate a species that reached the size of Anthropornis nordenskjoeldi, one of the largest known penguin species. Stem group penguins therefore attained a giant size very early in their evolution, with this gigantism existing for more than 30 million years. The new fossils are from a species that is phylogenetically more derived than Waimanu, and the unexpected coexistence of Waimanu with more derived stem group Sphenisciformes documents a previously unknown diversity amongst the world’s oldest penguins. The characteristic tarsometatarsus shape of penguins evolved early on, and the significant morphological disparity between Waimanu and the new fossil conflicts with recent Paleocene divergence estimates for penguins, suggesting an older, Late Cretaceous, origin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Acosta Hospitaleche C (2014) New giant penguin bones from Antarctica: systematic and paleobiological significance. Comptes Rendus Palevol 13:555–560

    Article  Google Scholar 

  • Acosta Hospitaleche C, Olivero E (2016) Re-evaluation of the fossil penguin Palaeeudyptes gunnari from the Eocene Leticia formation, Argentina: additional material, systematics and palaeobiology. Alcheringa 40:373–382

    Article  Google Scholar 

  • Ando T, Fordyce RE (2014) Evolutionary drivers for flightless, wing-propelled divers in the Northern and Southern Hemispheres. Palaeogeogr Palaeoclimatol Palaeoecol 400:50–61

    Article  Google Scholar 

  • Baker AJ, Pereira SL, Haddrath OP, Edge KA (2006) Multiple gene evidence for expansion of extant penguins out of Antarctica due to global cooling. Proc Roy Soc London B: Biol Sci 273:11–17

    Article  Google Scholar 

  • Browne GH, Lawrence MJF, Mortimer N, Clowes CD, Morgans HEG, Hollis CJ, Beu AG, Black JA, Sutherland R, Bache F (2016) Stratigraphy of Reinga and Aotea basins, NW New Zealand: constraints from dredge samples on regional correlations and reservoir character. New Zeal J Geol Geophys 59:396–415

    Article  CAS  Google Scholar 

  • Chávez Hoffmeister M (2014) Phylogenetic characters in the humerus and tarsometatarsus of penguins. Pol Polar Res 35:469–496

    Google Scholar 

  • Clarke JA, Ksepka DT, Stucchi M, Urbina M, Giannini N, Bertelli S, Narváez Y, Boyd CA (2007) Paleogene equatorial penguins challenge the proposed relationship between penguin biogeography, diversity, and Cenozoic climate change. Proc Natl Acad Sci U S A 104:11545–11550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clarke JA, Ksepka DT, Salas-Gismondi R, Altamirano AJ, Shawkey MD, D’Alba L, Vinther J, DeVries TJ, Baby P (2010) Fossil evidence for evolution of the shape and color of penguin feathers. Science 330:954–957

    Article  CAS  PubMed  Google Scholar 

  • Fordyce RE, Thomas DB (2011) Kaiika maxwelli, a new Early Eocene archaic penguin (Sphenisciformes, Aves) from Waihao Valley, South Canterbury, New Zealand. New Zeal J Geol Geop 54:43–51

    Article  Google Scholar 

  • Goloboff PA (1993) NONA, version 2.0. Published by the author, S. M. de Tucumán, Argentina

  • Jadwiszczak P (2001) Body size of Eocene Antarctic penguins. Pol Polar Res 22:147–158

    Google Scholar 

  • Jadwiszczak P (2015) Another look at tarsometatarsi of early penguins. Pol Polar Res 36:343–354

    Google Scholar 

  • Jadwiszczak P, Acosta Hospitaleche C, Reguero M (2013) Redescription of Crossvallia unienviella: the only Paleocene Antarctic penguin. Ameghiniana 50:545–553

    Article  Google Scholar 

  • Jarvis ED, Mirarab S, Aberer AJ et al (2014) Whole-genome analyses resolve early branches in the tree of life of modern birds. Science 346:1320–1331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kato A, Ropert-Coudert Y, Grémillet D, Cannell B (2006) Locomotion and foraging strategy in foot-propelled and wing-propelled shallow-diving seabirds. Mar Ecol Prog Ser 308:293–301

    Article  Google Scholar 

  • Ksepka DT, Ando T (2011) Penguins past, present, and future: trends in the evolution of the Sphenisciformes. In: Dyke G, Kaiser G (eds) Living dinosaurs: the evolutionary history of modern birds. Wiley, Chichester, pp 155–186

    Chapter  Google Scholar 

  • Ksepka DT, Fordyce RE, Ando T, Jones CM (2012) New fossil penguins (Aves, Sphenisciformes) from the Oligocene of New Zealand reveal the skeletal plan of stem penguins. J Vert Paleontol 32:235–254

    Article  Google Scholar 

  • Mayr G (2016) Avian evolution: the fossil record of birds and its paleobiological significance. Wiley-Blackwell, Chichester

    Book  Google Scholar 

  • Mitchell KJ, Cooper A, Phillips MJ (2015) Comment on “whole-genome analyses resolve early branches in the tree of life of modern birds”. Science 349:1460

    Article  CAS  PubMed  Google Scholar 

  • Myrcha A, Jadwiszczak P, Tambussi CP, Noriega JI, Gaździcki A, Tatur A, del Valle RA (2002) Taxonomic revision of Eocene Antarctic penguins based on tarsometatarsal morphology. Pol Polar Res 23:5–46

    Google Scholar 

  • Nixon KC (2002) WinClada, version 1.00.08. Ithaca

  • Prum RO, Berv JS, Dornburg A, Field DJ, Townsend JP, Lemmon EM, Lemmon AR (2015) A comprehensive phylogeny of birds (Aves) using targeted next-generation DNA sequencing. Nature 526:569–573

    Article  CAS  PubMed  Google Scholar 

  • Simpson GG (1946) Fossil penguins. Bull Am Mus Nat Hist 87:1–99

    Google Scholar 

  • Slack KE, Jones CM, Ando T, Harrison GL, Fordyce RE, Arnason U, Penny D (2006) Early penguin fossils, plus mitochondrial genomes, calibrate avian evolution. Mol Biol Evol 23:1144–1155

    Article  CAS  PubMed  Google Scholar 

  • Tambussi CP, Reguero MA, Marenssi SA, Santillana SN (2005) Crossvallia unienwillia, a new Spheniscidae (Sphenisciformes, Aves) from the late Paleocene of Antarctica. Geobios 38:667–675

    Article  Google Scholar 

Download references

Acknowledgements

We are indebted to Leigh Love, who collected the specimens and donated them to Canterbury Museum. We also thank Al Mannering for preparation work and Chris Clowes for data on the dinoflagellate fauna. Marío Chávez Hoffmeister provided a nexus file of his phylogenetic data set. Comments from Ursula Göhlich, Carolina Acosta-Hospitaleche, and four anonymous reviewers improved the text.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerald Mayr.

Electronic supplementary material

ESM 1

(NEX 13 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mayr, G., De Pietri, V.L. & Paul Scofield, R. A new fossil from the mid-Paleocene of New Zealand reveals an unexpected diversity of world’s oldest penguins. Sci Nat 104, 9 (2017). https://doi.org/10.1007/s00114-017-1441-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00114-017-1441-0

Keywords

Navigation