Skip to main content
Log in

An endoparasitoid Cretaceous fly and the evolution of parasitoidism

  • Original Paper
  • Published:
The Science of Nature Aims and scope Submit manuscript

Abstract

Parasitoidism is a key innovation in insect evolution, and parasitoid insects, nowadays, play a significant role in structuring ecological communities. Despite their diversity and ecological impact, little is known about the early evolution and ecology of parasitoid insects, especially parasitoid true flies (Diptera). Here, we describe a bizarre fly, Zhenia xiai gen. et sp. nov., from Late Cretaceous Burmese amber (about 99 million years old) that represents the latest occurrence of the family Eremochaetidae. Z. xiai is an endoparasitoid insect as evidenced by a highly developed, hypodermic-like ovipositor formed by abdominal tergites VIII + IX that was used for injecting eggs into hosts and enlarged tridactylous claws supposedly for clasping hosts. Our results suggest that eremochaetids are among the earliest definite records of parasitoid insects. Our findings reveal an unexpected morphological specialization of flies and broaden our understanding of the evolution and diversity of ancient parasitoid insects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Beckage NE (1985) Endocrine interactions between endoparasitic insects and their hosts. Annu Rev Entomol 30:371–413

    Article  CAS  Google Scholar 

  • Boucot AJ, Poinar JG (2010) Fossil behavior compendium. CRC Press, Boca Rato

    Book  Google Scholar 

  • Brodeur J, Boivin G (2004) Functional ecology of immature parasitoids. Annu Rev Entomol 49:27–49

    Article  CAS  PubMed  Google Scholar 

  • Buschbeck E, Strausfeld J (1997) The relevance of neural architecture to visual performance: phylogenetic conservation and variation in Dipteran visual systems. J Comp Neurol 383:282–304

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Wang B, Engel MS, Wappler T, Jarzembowski EA, Zhang HC, Wang XL, Zheng XT, Rust J (2014) Extreme adaptations for aquatic ectoparasitism in a Jurassic fly larva. eLife 3:e02844

    PubMed Central  PubMed  Google Scholar 

  • Eggleton P, Belshaw R (1992) Insect parasitoids: an evolutionary overview. Proc R Soc B 337:1–20

    Google Scholar 

  • Eggleton P, Belshaw R (1993) Comparison of dipteran, hymenopteran, and coleopteran parasitoids: provisional phylogenetic explanations. Biol J Linn Soc 48:213–226

    Article  Google Scholar 

  • Feener DH, Brown BV (1997) Diptera as parasitoids. Annu Rev Entomol 42:73–97

    Article  CAS  PubMed  Google Scholar 

  • Gilbert FS, Jervis MA (1998) Functional, evolutionary and ecological aspects of feeding-related mouthpart specializations in parasitoid flies. Biol J Linn Soc 63:495–535

    Article  Google Scholar 

  • Godfray HCJ (1994) Parasitoids: behavioral and evolutionary ecology. Princeton Univ Press, Princeton

    Google Scholar 

  • Grimaldi DA, Engel MS (2005) Evolution of the insects. Cambridge Univ Press, New York

    Google Scholar 

  • Grimaldi DA, Kathirithamby J, Schawaroch V (2005) Strepsiptera and triungula in Cretaceous amber. Insect Syst Evol 36:1–20

    Article  Google Scholar 

  • Grimaldi DA, Arillo A, Cumming JM, Hauser M (2011) Brachyceran Diptera (Insecta) in Cretaceous ambers, part IV, significant new Orthorrhaphous taxa. ZooKeys 148:293–332

    Article  PubMed  Google Scholar 

  • Gross P (1993) Insect behavioral and morphological defenses against parasitoids. Annu Rev Entomol 38:251–273

    Article  Google Scholar 

  • Heraty J (2009) Parasitoid biodiversity and insect pest management, Insect biodiversity: science and society. Blackwell Publishing, Oxford, pp 445–462

    Book  Google Scholar 

  • Hong YC (1983) Middle Jurassic fossil insects in North China. Geological Publishing House, Beijing

  • Kovalev VG (1989) Bremochaetidae, the Mesozoic family of brachycerous dipterans. Paleontol J 1989(2):100–105

    Google Scholar 

  • Labandeira CC (2002) Paleobiology of predators, parasitoids, and parasites: death and accommodation in the fossil record of continental invertebrates. Paleontol Soc Pap 8:211–250

    Google Scholar 

  • Lambkin CL, Sinclair BJ, Pape T, Courtney GW, Skevington JH, Meier R, Yeates DK, Blagoderov V, Wiegmann BW (2013) The phylogenetic relationships among infraorders and superfamilies of Diptera based on morphological evidence. Syst Entomol 38:164–179

    Article  Google Scholar 

  • Leung TLF (2015) Fossils of parasites: what can the fossil record tell us about the evolution of parasitism? Biol Rev. doi:10.1111/brv.12238

    PubMed  Google Scholar 

  • Mostovski MB (1996) To the knowledge of Archisargoidea (Diptera, Brachycera). Families Eremochaetidae and Archisargidae. Russ Entomol J 5:117–124

    Google Scholar 

  • Myskowiak J, Azar D, Nel A (2015) The first fossil hilarimorphid fly (Diptera: Brachycera). Gondwana Res. doi:10.1016/j.gr.2015.05.003

    Google Scholar 

  • Olmi M (1984) A revision of the Dryinidae (Hymenoptera). Mem Am Entomol Inst 37:17–947

    Google Scholar 

  • Peñalver E, Arillo A, Riccio ML, Pérez-De La Fuente R, Delclòs X, Barrón E, Grimaldi DA (2015) Long-proboscid flies as pollinators of Cretaceous gymnosperms. Curr Biol 25:1917–1923

    Article  PubMed  Google Scholar 

  • Pritchard G (1983) Biology of Tipulidae. Annu Rev Entomol 28:1–22

    Article  Google Scholar 

  • Ronquist F, Klopfstein S, Vilhelmsen L, Schulmeister S, Murray DL, Rasnitsyn AP (2012) A total-evidence approach to dating with fossils, applied to the early radiation of the Hymenoptera. Syst Biol 61:973–999

    Article  PubMed Central  PubMed  Google Scholar 

  • Ross A, Mellish C, York P, Crighton B (2010) Chapter 12. Burmese amber. In: Penney D (ed) Biodiversity of fossils in amber from the major world deposits. Siri Scientific Press, Manchester, pp 208–235

    Google Scholar 

  • Shi G, Grimaldi DA, Harlow GE, Wang J, Wang J, Yang M, Lei W, Li Q, Li X (2012) Age constraint on Burmese amber based on U-Pb dating of zircons. Cretac Res 37:155–163

    Article  Google Scholar 

  • Skevington JH, Dang PT (2002) Exploring the diversity of flies (Diptera). Biodiversity 3:3–27

    Article  Google Scholar 

  • Stireman O III (2006) Tachinidae: evolution, behavior, and ecology. Annu Rev Entomol 51:525–555

    Article  CAS  PubMed  Google Scholar 

  • Stoffolano JG Jr, Yin LRS (1987) Structure and function of the ovipositor and associated sensilla of the apple maggot, Rhagoletis pomonella (Walsh) (Diptera: Tephritidae). Int J Insect Morphol Embryol 16:41–69

    Article  Google Scholar 

  • Ussatchov DA (1968) New Jurassic Asilomorpha (Diptera) in Karatau. Entomol Rev 47:617–628

    Google Scholar 

  • Vinson SB, Iwantsch GF (1980) Host regulation by insect parasitoids. Q Rev Biol 55:143–165

    Article  CAS  Google Scholar 

  • Wajnberg É, Bernstein C, van Alphen J (2008) Behavioral ecology of insect parasitoids: from theoretical approaches to field applications. Blackwell Publishing Ltd, Oxford

    Book  Google Scholar 

  • Whitfield JB (1998) Phylogeny and evolution of host-parasitoid interactions in Hymenoptera. Annu Rev Entomol 43:129–151

    Article  CAS  PubMed  Google Scholar 

  • Wiegmann BM, Trautwein MD, Winkler IS, Barr NB, Kim J-W, Lambkin C, Bertone MA, Cassel BK, Bayless KM, Heimberg AM, Wheeler BM, Peterson KJ, Pape T, Sinclair BJ, Skevington JH, Blagoderov V, Caravas J, Kutty SN, Schmidt-Ott U, Kampmeier GE, Thompson FC, Grimaldi DA, Beckenbach AT, Courtney GW, Friedrich M, Meier R, Yeates DK (2011) Episodic radiations in the fly tree of life. Proc Natl Acad Sci U S A 108:5691–5695

    Article  Google Scholar 

  • Yeates DK (2002) Relationships of extant lower Brachycera (Diptera): a quantitative synthesis of morphological characters. Zool Scr 31:105–121

    Article  Google Scholar 

  • Zhang JF (2014a) New male eremochaetid flies (Diptera, Brachycera, Eremochaetidae) from the Lower Cretaceous of China. Cretac Res 49:205–221

    Article  Google Scholar 

  • Zhang JF (2014b) Archisargoid flies (Diptera, Brachycera, Archisargidae and Kovalevisargidae) from the Jurassic Daohugou biota of China, and the related biostratigraphical correlation and geological age. J Syst Palaeontol 13:857–881

    Article  Google Scholar 

  • Zhang KY, Yang D, Ren D (2014) New short-horned flies (Diptera: Eremochaetidae) from the Early Cretaceous of China. Zootaxa 3760:479–486

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to Prof. E.A. Jarzembowski for improving the English language of the manuscript and Mr. D.H. Yang for the reconstruction drawing. This research was supported by the National Basic Research Program of China (2012CB821900), National Natural Science Foundation of China (41572010, J1210006), and Youth Innovation Promotion Association of CAS (No. 2011224).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Wang.

Additional information

Communicated by: Sven Thatje

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Q., Zhang, J., Feng, Y. et al. An endoparasitoid Cretaceous fly and the evolution of parasitoidism. Sci Nat 103, 2 (2016). https://doi.org/10.1007/s00114-015-1327-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00114-015-1327-y

Keywords

Navigation