Skip to main content

Advertisement

Log in

When xenarthrans had enamel: insights on the evolution of their hypsodonty and paleontological support for independent evolution in armadillos

  • Original Paper
  • Published:
Naturwissenschaften Aims and scope Submit manuscript

Abstract

All xenarthrans known to date are characterized by having permanent teeth that are both high crowned and open rooted, i.e., euhypsodont, and with a type of hypsodonty different from that of the rest of Placentalia: dentine hypsodonty. Also, most xenarthrans lack enamel; however, its presence has been reported in the fossil armadillo Utaetus buccatus and in living Dasypus. Considering the divergence of Xenarthra from other eutherians that possessed enameled teeth, the absence of enamel is a derived character. Diverse specializations are known in the dentition of xenarthrans, but the primitive pattern of their teeth and dentitions is still unknown. Here, we describe the mandible and teeth of a fossil armadillo, Astegotherium dichotomus (Astegotheriini, Dasypodidae), from the early Middle Eocene of Argentine Patagonia, with teeth showing both true enamel and closed roots. It is the oldest xenarthran with mandibular remains exhibiting protohypsodonty and is therefore likely representative of ancestral cingulates and xenarthrans generally. Astegotherium supports a recent hypothesis based on molecular data that enamel loss occurred independently not only within xenarthrans but also within dasypodid armadillos.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

MMP:

Museo Municipal de Ciencias Naturales de Mar del Plata “Lorenzo Scaglia” Mar del Plata, Argentina

MPEF:

Museo Paleontológico Egidio Feruglio Trelew, Argentina

References

  • Ameghino F (1902) Notices préliminaires sur des mammifères nouveaux des terrains crètacés de Patagonie. Bol Acad Nac Cienc 17:5–70

  • Asher RJ, Bennett N, Lehmann T (2009) The new framework for understanding placental mammal evolution. BioEssays 31:853–864

  • Bargo MS, De Iuliis G, Vizcaíno SF (2006) Hypsodonty in Pleistocene ground sloths. Acta Paleontol Pol 51:53–61

    Google Scholar 

  • Bellosi ES, Krausse MJ (2014) Onset of the Middle Eocene global cooling and expansion of open-vegetation habitats in central Patagonia. Andean Geol 41(1):29–48

    Google Scholar 

  • Berqvist LP, Abrantes EAL, Avilla LDS (2004) The Xenarthra (Mammalia) of São José de Itaboraí Basin (upper Paleocene, Itaboriaian), Río de Janeiro, Brazil. Geodiversitas 26:323–337

    Google Scholar 

  • Billet G, Blondel C, De Muizon C (2009) Dental microwear analysis of notoungulates (Mammalia) from Salla (Late Oligocene, Bolivia) and discussion on their precocious hypsodonty. Palaeogeogr Palaeoclimatol Palaeoecol 274(1):114–124

    Article  Google Scholar 

  • Billet G, Hautier L, de Muizon C, Valentin X (2011) Oldest cingulate skulls provide congruence between morphological and molecular scenarios of armadillo evolution. Proc R Soc B 278:2791–2797. doi:10.1098/rspb.2010.2443

    Article  PubMed Central  PubMed  Google Scholar 

  • Carlini AA, Vizcaíno SF, Scillato-Yané GJ (1997) Armored Xenarthrans: a unique taxonomic and ecologic assemblage. In: Kay RF, Madden RH, Cifelli RL, Flynn JJ (eds) Vertebrate palaeontology in the Neotropics: the Miocene fauna of La Venta. Colombia. Smithsonian Institution Press, Washington, pp 213–226

    Google Scholar 

  • Carlini AA, Ciancio MR, Scillato-Yané GJ (2010) Middle Eocene-Early Miocene Dasypodidae (Xenarthra) of southern South America: faunal succession at Gran Barranca biostratigraphy and palaeoecology. In: Madden RH, Carlini AA, Vucetich MG, Kay RF (eds) The paleontology of Gran Barranca: evolution and environmental change through the Middle Cenozoic of Patagonia. Cambridge University Press, Cambridge, pp 106–129

    Google Scholar 

  • Cassini GH, Vizcaíno SF (2012) An approach to the biomechanics of the masticatory apparatus of Early Miocene (Santacrucian Age) South American ungulates (Astrapotheria, Litopterna, and Notoungulata): moment arm estimation based on 3D landmarks. J Mamm Evol 19(1):9–25

    Article  Google Scholar 

  • Charles C, Solé F, Gomes Rodrigues H, Viriot L (2013) Under pressure? Dental adaptations to termitophagy and vermivory among mammals. Evolution 67(6):1792–1804

    Article  PubMed  Google Scholar 

  • Ciancio MR, Vieytes EC, Castro MC, Carlini AA (2010) Estructura del esmalte en Dasypus (Xenarthra, Dasypodidae), consideraciones filogenéticas preliminares. XXIII JAM, Abstract nº 26, pp 89

  • Ciancio MR, Castro MC, Galliari FC, Carlini AA, Asher RJ (2012) Evolutionary implications of dental eruption in Dasypus (Xenarthra). J Mamm Evol 19:1–8

    Article  Google Scholar 

  • Ciancio MR, Carlini AA, Campbell K, Scillato-Yané GJ (2013) New Paleogene cingulates (Mammalia, Xenarthra) from Santa Rosa, Peru, and their importance in the context of South American faunas. J Syst Paleontol 11(6):727–741

    Article  Google Scholar 

  • Cifelli RL (1985) Biostratigraphy of the Casamayoran, Early Eocene, of Patagonia. Am Mus Novit 2820:1–26

    Google Scholar 

  • Collin R, Miglietta P (2008) Reversing opinions on Dollo’s law. Trends Ecol Evol 23(11):602–609

    Article  PubMed  Google Scholar 

  • Croft DA, Bond M, Flynn JJ, Reguero M, Wyss AR (2003) Large archaeohyracids (Typotheria, Notoungulata) from Central Chile and Patagonia, including a revision of Archaeotypotherium. Fieldiana Geol 49:1–38

    Google Scholar 

  • Damuth J, Janis CM (2011) On the relationship between hypsodonty and feeding ecology in ungulate mammals, and its utility in palaeoecology. Biol Rev Camb Philos Soc 86(3):733–758

    Article  PubMed  Google Scholar 

  • Davit-Béal T, Tucker AS, Sire J-Y (2009) Loss of teeth and enamel in tetrapods: fossil record, genetic data and morphological adaptions. J Anat 214:477–501

    Article  PubMed Central  PubMed  Google Scholar 

  • Delsuc F, Douzery E (2008) Recent advances and future prospects in xenarthran molecular phylogenetics. In: Vizcaíno SF, Loughry WJ (eds) The biology of the Xenarthra. University Press of Florida, Florida, pp 11–23

    Google Scholar 

  • Delsuc F, Vizcaíno SF, Douzery EJP (2004) Influence of Tertiary paleoenvironmental changes on the diversification of South American mammals: a relaxed molecular clock study within xenarthrans. BMC Evol Biol 4:1–13

    Article  Google Scholar 

  • Delsuc F, Superina M, Tilak MK, Douzery EJ, Hassanin A (2012) Molecular phylogenetics unveils the ancient evolutionary origins of the enigmatic fairy armadillos. Mol Phylogenet Evol 62(2):673–680

    Article  PubMed  Google Scholar 

  • DeSalle R (2009) Molecular tooth decay. PLoS Genet 5(9):e1000655. doi:10.1371/journal.pgen.1000655

    Article  PubMed Central  PubMed  Google Scholar 

  • Dunn ER, Madden RH, Kohn MJ, Schmitz MD, Strömberg CAE, Carlini AA, Ré GH, Crowley J (2013) A new chronology for Middle Eocene-Early Miocene South American Land Mammal Ages. Geol Soc Am Bull 125(3–4):539–555

    Article  Google Scholar 

  • Flynn JJ, Wyss AR, Croft DA, Charrier R (2003) The Tinguiririca fauna, Chile: biochronology, paleoecology, biogeography, and a new earliest Oligocene South American Land Mammal ‘Age’. Palaeogeogr Palaeoclimatol 195:229–259

    Article  Google Scholar 

  • Gaudin TJ, McDonald HG (2008) Morphology-based investigations of the phylogenetic relationships among extant and fossil xenarthrans. In: Vizcaíno SF, Loughry WJ (eds) The biology of the Xenarthra. University Press of Florida, Florida, pp 24–36

    Google Scholar 

  • Gelfo JN, Reguero MA, López GM, Carlini AA, Ciancio MR, Chornogubsky L, Bond M, Goin FJ, Tejedor M (2009) Eocene mammals and continental strata from Patagonia and Antarctic Peninsula. Mus North Ariz Bull 64:567–592

    Google Scholar 

  • Green JL (2009) Dental microwear in the orthodentine of the Xenarthra (Mammalia) and its use in reconstructing the palaeodiet of extinct taxa: the case study of Notrotheriops shastensis (Xenarthra, Tardigrada, Nothrotheriidae). Zool J Linn Soc 156:201-222

  • Hallström BM, Kullberg M, Nilsson MA, Janke A (2007) Phylogenomic data analyses provide evidence that Xenarthra and Afrotheria are sister groups. Mol Biol Evol 24:2059–2065

  • Hoffstetter R (1958) Edentés Xénarthres. In: Piveteau J (ed) Traité de Paléontologie 6. Masson et Compagnie, Paris, pp 535–626

    Google Scholar 

  • Janis CM (1988) An estimation of tooth volume and hypsodonty indices in ungulate mammals and the correlation of these factors with dietary preferences, In: Russel DE, Santorio JP, Signogneu-Russel D (eds.) Teeth revisited: proceedings of the VII International Symposium on Dental Morphology. Mus Nat Hist Natur Mem sér C 53:367-387

  • Janis CM, Fortelius M (1988) On the means whereby mammals achieve increased functional durability of their dentitions, with special references to limiting factors. Biol Rev 63:197–230

    Article  CAS  PubMed  Google Scholar 

  • Kalthoff D (2011) Microstructure of dental hard tissues in fossil and recent xenarthrans (Mammalia: Folivora and Cingulata). J Morphol 272:641–661

    Article  PubMed  Google Scholar 

  • Kay RF, Madden RH, Vucetich MG, Carlini AA, Mazzoni MM, Re GH, Heizler M, Sandeman H (1999) Revised age of the Casamayoran South American Land Mammal “Age”. Climatic and biotic implications. Proc Natl Acad Sci U S A 96:13235–13240

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Koenigswald W (1993) Heterochronies in morphology and schmelzmuster of hypsodont molars in the Muroidea (Rodentia). Quat Int 19:57–61

    Article  Google Scholar 

  • Koenigswald W (1997) Brief survey of enamel diversity at the schemelzmuter level in Cenozoic placental mammals. In: Koenigswald W, Sander PM (eds) Tooth enamel microstructure. Balkema, Rotterdam, pp 137–161

    Google Scholar 

  • Koenigswald W (2000) Two different strategies in enamel differentiation: Marsupialia versus Eutheria. In: Teaford MF, Smith MM, Fergurson MJ (eds) Development, function and evolution of teeth. Cambridge University Press, Cambridge, pp 203–235

    Google Scholar 

  • Koenigswald W (2011) Diversity of hypsodont teeth in mammalian dentitions - construction and classification. Palaeontogr Abt A 294:63–94

    Google Scholar 

  • Koenigswald Wv, Sanders PM (1997) Glossary of terms used for enamel microstructures, In: Koenigswald Wv, Sander PM (eds) Tooth enamel microstructure. Rotterdam, Balkema, pp 267-280

  • Koenigswald W, Goin F, Pascual R (1999) Hypsodonty and enamel microstructure in the Paleocene gondwanatherian mammal Sudamerica ameghinoi. Acta Palaeontol Pol 44:263–300

    Google Scholar 

  • Lucas PW, Casteren A, Al-Fadhalah K, Almusallam AS, Henry AG, Michael S, Watzke J, Reed DA, Diekwisch TGH, Strait DS, Atkins AG (2014) The role of dust, grit and phytoliths in tooth wear. Ann Zool Fenn 51(1):143–152

    Article  Google Scholar 

  • Madden RH (1999) On the causes of hypsodonty in South American mammals. Congreso Internacional Evolución Neotropical del Cenozoico. Programa y resúmenes, p 29

  • Maddison WP, Maddison DR (2009) Mesquite: a modular system for evolutionary analysis.Version 2.72. http://mesquiteproject.org

  • Martin BE (1916) Tooth development in Dasypus novemcinctus. J Morphol 27:647–691

    Article  Google Scholar 

  • Martin LD (1993) Evolution of hypsodonty and enamel structure in Plio-Pleistocene rodents. In: Martin RA, Barnosky AD (eds) Morphological change in Quaternary mammals of North America. Cambridge University Press, Cambridge, pp 205–225

    Chapter  Google Scholar 

  • McKenna MC, Bell SK (1997) Clasification of mammals above the species level. Columbia University Press, New York

    Google Scholar 

  • McKenna MC, Wyss AR, Flynn JJ (2006) Paleogene pseudoglyptodon xenarthrans from central Chile and Argentine Patagonia. Am Mus Nov 3536:1–18

  • McNaughton SJ, Tarrants JL, McNaughton MM, Davis RH (1985) Silica as a defense against herbivory and a growth promotor in African grasses. Ecology 66:528–535

    Article  CAS  Google Scholar 

  • Meredith RW, Gatesy J, Murphy WJ, Ryder OA, Springer MS (2009) Molecular decay of the tooth gene enamelin (ENAM) mirrors the loss of enamel in the fossil record of placental mammals. PLoS Genet 5:1–12

    Article  Google Scholar 

  • Meredith RW, Janečka JE, Gatesy J, Ryder OA, Fisher CA, Teeling EC, Goodbla A, Eizirik E, Taiz LLS, Stadler T, Rabosky DL, Honeycutt RL, Flynn JJ, Ingram CM, Steiner C, Williams TL, Robinson TJ, Burk-Herrick A, Westerman M, Ayoub NA, Springer MS, Murphy WJ (2013) Impacts of the Cretaceous Terrestrial Revolution and KPg extinction on mammal diversification. Science 334(6055):521–524

    Article  Google Scholar 

  • Mones A (1982) An equivocal nomenclature: what means hypsodonty? Palaeontol Z 56:107–111

    Article  Google Scholar 

  • Murphy WJ, Eizirik E, O'Brien SJ, Madsen O, Scally M, Douady CJ, Teeling E, Ryder OA, Stanhope MJ, de Jong WW, Springer MS (2001) Resolution of the early placental mammal radiation using Bayesian phylogenetics. Science 294:2348–2351

    Article  CAS  PubMed  Google Scholar 

  • Nevo E (1979) Adaptive convergence and divergence of subterranean mammals. Annu Rev Ecol Syst 10:269–308

    Article  Google Scholar 

  • O'Leary MA, Bloch JI, Flynn JJ, Gaudin TJ, Giallombardo A, Giannini NP, Goldberg SL, Kraatz BP, Luo Z, Xijun Ni JM, Novacek MJ, Perini FA, Randall ZS, Rougier GW, Sargis EJ, Silcox MT, Simmons NB, Spaulding M, Velazco PM, Weksler M, Wible JR, Cirranello AL (2013) The placental mammal ancestor and the post-K-Pg radiation of placentals. Science 339(6120):662–667

    Article  PubMed  Google Scholar 

  • Olivera EV, Berqvist LP (1998) A new Paleocene armadillo (Mammalia, Dasypodoidea) from the Itaboraí Basin, Brazil. APA Publicación Especial: Paleógeno de América del Sur y de la Península Antártica 5:35-40

  • Ortiz-Jaureguizar E, Cladera G (2006) Paleoenvironmental evolution of southern South America during the Cenozoic. J Arid Environ 66:489–532

    Article  Google Scholar 

  • Palazzesi L, Barreda V (2012) Fossil pollen records reveal a late rise of open-habitat ecosystems in Patagonia. Nat Commun 3:1294. doi:10.1038/ncomms2299

    Article  PubMed  Google Scholar 

  • Pascual R (2006) Evolution and geography: the biogeographic history of South American land mammals. Ann Mo Bot Gard 93:209–230

    Article  Google Scholar 

  • Ré GH, Bellosi ES, Heizler M, Vilas JF, Madden RH, Carlini AA, Kay RF, Vucetich MG (2010) A geochronology for the Sarmiento Formation at Gran Barranca. In: Madden RH, Carlini AA, Vucetich MG, Kay RF (eds) The paleontology of Gran Barranca: evolution and environmental change through the Middle Cenozoic of Patagonia. Cambridge University Press, Cambridge, pp 46–59

    Google Scholar 

  • Romiguier J, Ranwez V, Delsuc F, Galtier N, Douzery EJ (2013) Less is more in mammalian phylogenomics: AT-rich genes minimize tree conflicts and unravel the root of placental mammals. Mol Biol Evol 30(9):2134–2144

    Article  CAS  PubMed  Google Scholar 

  • Rose KD (2006) The beginning of the Age of Mammals. Baltimore, MD. Johns Hopkins University Press

  • Sanson GD, Kerr SA, Gross KA (2007) Do silica phytoliths really wear mammalian teeth? J Archaeol Sci 34:526–531

  • Scarano AC (2009) El proceso de desarrollo de la hipsodoncia durante la transición Eoceno-Oligoceno: el caso de los ungulados autóctonos del Orden Notoungulata (Mammalia). PhD Thesis, UNLP.

  • Scillato-Yané GJ (1980) Catálogo de los Dasypódidae fósiles (Mammalia, Edentata) de la República Argentina. Actas II Congreso Argentino De Paleontología y Bioestratigrafía y I Congreso Latinoamericano De Paleontología, III: 7-36

  • Shoshani J, McKenna MC (1998) Higher taxonomic relationships among extant mammals based on morphology, with selected comparisons of results from molecular data. Mol Phylogenet Evol 9:572–584

    Article  CAS  PubMed  Google Scholar 

  • Simpson GG (1932) Enamel on the teeth of an Eocene edentate. Am Mus Novit 567:1–4

    Google Scholar 

  • Simpson GG (1945) The principles of classification and a classification of mammals. Bull Am Mus Nat Hist 85:1–335

    Google Scholar 

  • Simpson GG (1948) The beginning of the age of mammals in South America. Part. 1. Introductión, Marsupialia, Edentata, Condylarthra, Litopterna, and Notioprogonia. Bull Am Mus Nat Hist 91(1):1–232

    Google Scholar 

  • Simpson GG (1970) Addition to knowledge of Groeberia (Mammalia, Marsupialia) from the Mid-Cenozoic of Argentina. Brevoria 362:1–17

    Google Scholar 

  • Springer MS, Murphy WJ (2007) Mammalian evolution and biomedicine: new views from phylogeny. Biol Rev 82:375–392

    Article  PubMed  Google Scholar 

  • Strömberg CA, Dunn RE, Madden RH, Kohn MJ, Carlini AA (2013) Decoupling the spread of grasslands from the evolution of grazer-type herbivores in South America. Nat Commun 4:1478. doi:10.1038/ncomms2508

    Article  PubMed  Google Scholar 

  • Tabuce R, Delmer C, Gheerbrant E (2007) Evolution of the tooth enamel microstructure in the earliest proboscideans (Mammalia). Zool J Linnean Soc 149:611–628

    Article  Google Scholar 

  • Vizcaíno SF (1994) Sistemática y anatomía de los Astegotheriini Ameghino, 1906 (nuevo rango) (Dasypodidae, Dasypodinae). Ameghiniana 31:3–13

    Google Scholar 

  • Vizcaíno SF (2009) The teeth of the “toothless”: novelties and key innovations in the evolution of xenarthrans (Mammalia, Xenarthra). Paleobiology 35:343–366

    Article  Google Scholar 

  • Wake DB, Wake MH, Specht CD (2011) Homoplasy: from detecting pattern to determining process and mechanism of evolution. Science 331(6020):1032–1035

    Article  CAS  PubMed  Google Scholar 

  • Wible JR, Rougier GW, Novacek MJ, Asher RJ (2009) The eutherian mammal Maelestes gobiensis from the Late Cretaceous of Mongolia and the phylogeny of Cretaceous Eutheria. Bull Am Mus Nat Hist 1-123

  • Wood CB, Stern DN (1997) The earliest prisms in mammalian and reptilian enamel. In: Koenigswald W, Sander PM (eds) Tooth enamel microstructure. Balkema, Rotterdam, pp 63–83

    Google Scholar 

  • Woodburne MO, Goin FJ, Bond M, Carlini AA, Gelfo JN, López GN, Iglesias A, Zimicz AN (2014) Paleogene land mammal faunas of South America; a response to global climatic changes and indigenous floral diversity. J Mamm Evol 22(1):1–73

    Article  Google Scholar 

Download references

Acknowledgments

Many thanks to Alejandro Dondas (MMP, Mar del Plata, Buenos Aires) for providing access to and loan of the valuable material for this study; E. Ruigómez for access to specimens at MPEF (Chubut); Richard Madden for interesting discussions on hypsodonty; Robert Asher, Darin Croft, and two anonymous reviewers for valuable suggestions that improved the original manuscript; Diego Brandoni for logistical support; and Cecilia Morgan for help with the English text. We acknowledge financial support from Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET) and Universidad Nacional de La Plata (UNLP, FCNYM N-593 to A.A.C).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martín R. Ciancio.

Additional information

Communicated by: Robert J. Asher

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ciancio, M.R., Vieytes, E.C. & Carlini, A.A. When xenarthrans had enamel: insights on the evolution of their hypsodonty and paleontological support for independent evolution in armadillos. Naturwissenschaften 101, 715–725 (2014). https://doi.org/10.1007/s00114-014-1208-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00114-014-1208-9

Keywords

Navigation