Skip to main content
Log in

Astaxanthin and papilioerythrinone in the skin of birds: a chromatic convergence of two metabolic routes with different precursors?

  • Original Paper
  • Published:
Naturwissenschaften Aims and scope Submit manuscript

Abstract

Carotenoids are organic pigments involved in several important physiological functions and may serve as indicators of individual quality in animals. These pigments are only obtained by animals from the diet, but they can be later transformed into other carotenoids by specific enzymatic reactions. The diet of farm-reared and probably wild red-legged partridges (Alectoris rufa) is mainly based on cereals that contain high levels of lutein and zeaxanthin. These two carotenoids are also predominant in internal tissues and blood of red-legged partridges. However, in their integuments, astaxanthin and papilioerythrinone (the last one identified in this work) are mainly present in their free form and esterified with fatty acids. According to available literature about carotenoid metabolism in animals, we propose that astaxanthin (λ max = 478 nm) and papilioerythrinone (λ max = 452–478 nm) are the result of a chromatic convergence of the transformation of dietary zeaxanthin and lutein, respectively. Moreover, the results obtained in this work provide the first identification by liquid chromatography coupled to accurate mass quadrupole time-of-flight mass spectrometer system of papilioerythrinone (m/z 581.3989 [M + H]+) in the skin (i.e., not feathers) of a vertebrate. Astaxanthin and papilioerythrinone are very close in terms of chemical structure and coloration, and the combination of these two keto-carotenoids is responsible for the red color of the ornaments in red-legged partridges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alonso-Alvarez C, Galván I (2011) Free radical exposure creates paler carotenoid-based ornaments: a possible interaction in the expression of black and red traits. PLoS ONE 6:e19403

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Alonso-Alvarez C, Pérez-Rodríguez L, Mateo R, Chastel O, Viñuela J (2008) The oxidation handicap hypothesis and the carotenoid allocation trade-off. J Evol Biol 21:1789–1797

    Article  CAS  PubMed  Google Scholar 

  • Alonso-Alvarez C, Pérez-Rodríguez L, Ferrero ME, García-de Blas E, Casas F, Mougeot F (2012) Adjustment of female reproductive investment according to male carotenoid-based ornamentation in a gallinaceous bird. Behav Ecol Sociobiol 66:731–742

    Article  Google Scholar 

  • Arroyo B, Delibes-Mateos M, Díaz-Fernández S, Viñuela J (2012) Hunting management in relation to profitability aims: red-legged partridge hunting in central Spain. Eur J Wildl Res 58:847–855

    Article  Google Scholar 

  • Britton G (1995) Structure and properties of carotenoids in relation to function. FASEB J 9:1551–1558

    Google Scholar 

  • Britton G, Liaaen-Jensen S, Pfander H (1995) Carotenoids, Volume 1B: Spectroscopy, Birkhäuser Verlag Basel Switzerland

  • Castillo R, Lenel R (1978) Determination and metabolism of carotenoid pigments in the hermit crab Clibanarius erythropus latreille (1818) [Syn. Cl. misanthropus heller (1863)]. Comp Biochem Physiol 59:67–73

    Google Scholar 

  • Chew BP, Park JS (2004) Carotenoid action on the immune response. J Nutr 134:257S–261S

    CAS  PubMed  Google Scholar 

  • Cuthill I (2006) Color perception. In: Hill GE, McGraw KJ (eds) Bird coloration, vol 1, Mechanisms and measurements. Havard University Press, Cambridge, pp 3–40

    Google Scholar 

  • Díaz-Fernández S, Arroyo B, Casas F, Martínez-Haro M, Viñuela J (2013) Effect of game management on wild red-legged partridge abundance. PLoS ONE 8:e66671

    Article  PubMed Central  PubMed  Google Scholar 

  • Enzell CR, Back S (1995) Mass spectrometry. In: Britton G, Liaaen-Jensen S, Pfander H (eds) Carotenoids, Volume 1B: Spectroscopy. Birkhäuser Verlag, Switzerland, pp 261–320

    Google Scholar 

  • Enzell CR, Francis GW, Liaaen-Jensen S (1968) Mass spectrometric studies of carotenoids: occurrence and intensity ratios of M-92 and M-106 peaks. Acta Chem Scand 22:1054–1055

    Article  CAS  PubMed  Google Scholar 

  • García-de Blas E, Mateo R, Viñuela J, Alonso-Alvarez C (2011) Identification of carotenoid pigments and their fatty acid esters in an avian integument combining HPLC-DAD and LC-MS analyses. J Chromatogr B 879:341–348

    Article  Google Scholar 

  • García-de Blas E, Mateo R, Viñuela J, Pérez-Rodríguez L, Alonso-Alvarez C (2013) Free and esterified carotenoids in ornaments of an avian species: the relationship to color expression and sources of variability. Physiol Biochem Zool 86:483–498

    Article  PubMed  Google Scholar 

  • Goodwin TW (1984) The biochemistry of the carotenoids, Volume II: Animals. Chapman and Hall, London

    Book  Google Scholar 

  • Gortazar C, Villafuerte R, Martin M (2000) Success of traditional restocking of red-legged partridge for hunting purposes in areas of low density of northeast Spain Aragón. Z Jagdwiss 46:23–30

    Google Scholar 

  • Grafen A (1990) Biologiacl signals as handicaps. J Theor Biol 144:517–546

    Article  CAS  PubMed  Google Scholar 

  • Harashima K, Ohno T, Sawachika T, Hidaka T, Ohnishi E (1972) Carotenoids in orange pupae of the swallowtail, Papilio xuthus. Insect Biochem 2:29–48

    Article  CAS  Google Scholar 

  • Harashima K, Nakahara J, Kato G (1976) A new ketocarotenoid in integuments of orange pupae of a swallowtail, Papilio xucthus, and carapaces of a crab, Paralithodes brevipes (Hanasakigani in Japanese). Agric Biol Chem 40:711–717

    Article  CAS  Google Scholar 

  • Hart NS, Vorobyev M (2005) Modelling oil droplet absorption spectra and spectral sensitivities of bird cone photoreceptors. J Comp Physiol A 191:381–392

    Article  Google Scholar 

  • Hill GE, Johnson JD (2012) The vitamin A–redox hypothesis: a biochemical basis for honest signaling via carotenoid pigmentation. Am Nat 180:E127–E150

    Article  PubMed  Google Scholar 

  • LaFountain AM, Frank HA, Prum RO (2013) Carotenoids from crimson and maroon plumages of Old World orioles (Oriolidae). Arch Biochem Biophys 539:126–132

    Article  CAS  PubMed  Google Scholar 

  • Lemoine Y, Schoefs B (2010) Secondary ketocarotenoid astaxanthin biosynthesis in algae: a multifunctional response to stress. Photosynth Res 106:155–177

    Article  CAS  PubMed  Google Scholar 

  • Lozano GA (1994) Carotenoids, parasites, and sexual selection. Oikos 70:309–311

    Article  Google Scholar 

  • Mangoni O, Imperatore C, Tomas CR, Costantino V, Saggiomo V, Mangoni A (2011) The new carotenoid pigment moraxanthin is associated with toxic microalgae. Mar Drugs 9:242–255

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Maoka T (2009) Recent progress in structural studies of carotenoids in animals and plants. Arch Biochem Biophys 483:191–195

    Article  CAS  PubMed  Google Scholar 

  • Maoka T (2011) Carotenoids in marine animals. Mar Drugs 9:278–293

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Matsuno T, Maoka T (1988) The carotenoids of crab Paralithodes brevipes (Hanasakigani in Japanese). Nippon Suisan Gakkaishi 54:1437–1442

    Article  CAS  Google Scholar 

  • Matsuno T, Ookubo M (1982) The first isolation and identification of fritschiellaxanthin from a crab Sesarma haematocheir (AKATEGANI in Japanese). B Jpn Soc Sci Fish 48:653–659

  • McGraw KJ (2006) Mechanics of carotenoid-based coloration. In: Hill GE, McGraw KJ (eds) Bird coloration, vol 1, Mechanisms and measurements. Harvard University Press, Cambridge, pp 177–242

    Google Scholar 

  • McGraw KJ, Gregory AJ (2004) Carotenoid pigments in male American goldfinches: what is the optimal biochemical strategy for becoming colourful? Biol J Linn Soc 83:273–280

    Article  Google Scholar 

  • McGraw KJ, Hardy LSJ (2006) Astaxanthin is responsible for the pink plumage flush in Franklin’s and Ring-billed gulls. Field Ornithol 77:29–33

    Article  Google Scholar 

  • Miller NJ, Sampson J, Candeias LP, Bramley PM, Rice-Evans CA (1996) Antioxidant activities of carotenes and xanthophylls. FEBS Lett 384:240–242

    Article  CAS  PubMed  Google Scholar 

  • Møller AP, Biard C, Blount JD, Houston DC, Ninni P, Saino N, Surai PF (2000) Carotenoid-dependent signals: indicators of foraging efficiency, inmmunocompetence or detoxification ability? Avian Poult Biol Rev 11:137–159

    Google Scholar 

  • Murillo E, McLean R, Britton G, Agócs A, Nagy V, Deli J (2011) Sapotexanthin, an A-provitamin carotenoid from Red Mamey (Pouteria sapota). J Nat Prod 74:283–385

    Article  CAS  PubMed  Google Scholar 

  • Pérez-Bonilla A, Frikha M, Mirzaie S, García J, Mateos GG (2011) Effects of the main cereal and type of fat of the diet on productive performance and egg quality of brown-egg laying hens from 22 to 54 weeks of age. Poult Sci 90:2801–2810

    Article  PubMed  Google Scholar 

  • Pérez-Rodriguez L (2009) Carotenoids in evolutionary ecology: re-evaluating the antioxidant role. BioEssays 31:1116–1126

    Article  PubMed  Google Scholar 

  • Pérez-Rodriguez L, Viñuela J (2008) Carotenoid-based bill and eye ring coloration as honest signals of condition: an experimental test in the red-legged-partridge (Alectoris rufa). Naturwissenschaften 95:821–830

    Article  PubMed  Google Scholar 

  • Rodríguez-Estival J, Martínez-Haro M, Martín-Hernando MP, Mateo R (2010) Sub-chronic effects of nitrate in drinking water on red-legged partridge (Alectoris rufa): Oxidative stress and T-cell mediated immune function. Environ Res 110:169–175

    Article  Google Scholar 

  • Stahl W, Sies H (2003) Antioxidant activity of carotenoids. Mol Asp Med 24:345–351

    Article  CAS  Google Scholar 

  • Stradi R (1998) The color of flight: carotenoids in bird plumage. Gruppo Editoriale Informatico Solei, Milan

    Google Scholar 

  • Stradi R, Pini E, Celentano G (2001) Carotenoids in bird plumage: the complement of red pigments in the plumage of wild and captive bullfinch (Pyrrhula pyrrhula). Comp Biochem Physiol B 128:529–535

    Article  CAS  PubMed  Google Scholar 

  • Suhnel S, Lagreze F, Ferreira JF, Campestrini LH, Maraschin M (2009) Carotenoid extraction from the gonad of the scallop Nodipecten nodosus (Linnaeus, 1758) (Bivalvia: Pectinidae). Braz J Biol 69:209–215

    Article  CAS  PubMed  Google Scholar 

  • Surai PF (2002) Natural antioxidants in avian nutrition and reproduction. Nottingham University Press, Nottingham

    Google Scholar 

  • Zahavi A (1975) Mate selection — a selection for a handicap. J Theor Biol 53:205–214

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Akira Yamanaka (Department of Biology and Chemistry, Yamaguchi University, Japan) and Sayuri Shigematsu (Department of Microbiology and Immunology, Nagasaki University, Japan) for providing samples of swallowtail and crab, and Estación Biológica de Doñana (CSIC, Sevilla, Spain) and the Museo Nacional de Ciencias Naturales (CSIC, Madrid, Spain) for providing bullfinch feathers. We also thank the owners and managers of the farms and wild areas that supplied partridges. Javier Viñuela provided useful ideas in the first stages of the study. We also appreciate the help of Antonio Pérez-Gálvez with the MS/MS data, and James D. Johnson and another one anonymous reviewer for constructive comments on the manuscript. Esther García-de Blas was supported by a predoctoral grant (JAE-PRE) from the Consejo Superior de Investigaciones Científicas (CSIC) cofinanced by Fondo Social Europeo. This study was funded by Consejería de Educación y Ciencia, Junta de Comunidades de Castilla la Mancha (PII1I09-0271-5037), and Ministerio de Economía y Competitividad (CGL2009-10883-C02-02 and CGL2012-40229-C02-01) from the Spanish government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Esther García-de Blas.

Additional information

Communicated by: Alexandre Roulin

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 58 kb)

ESM 2

(DOC 54 kb)

ESM 3

(DOC 3582 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

García-de Blas, E., Mateo, R., Guzmán Bernardo, F.J. et al. Astaxanthin and papilioerythrinone in the skin of birds: a chromatic convergence of two metabolic routes with different precursors?. Naturwissenschaften 101, 407–416 (2014). https://doi.org/10.1007/s00114-014-1169-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00114-014-1169-z

Keywords

Navigation