Skip to main content
Log in

Phototaxis and polarotaxis hand in hand: night dispersal flight of aquatic insects distracted synergistically by light intensity and reflection polarization

  • Original Paper
  • Published:
Naturwissenschaften Aims and scope Submit manuscript

Abstract

Based on an earlier observation in the field, we hypothesized that light intensity and horizontally polarized reflected light may strongly influence the flight behaviour of night-active aquatic insects. We assumed that phototaxis and polarotaxis together have a more harmful effect on the dispersal flight of these insects than they would have separately. We tested this hypothesis in a multiple-choice field experiment using horizontal test surfaces laid on the ground. We offered simultaneously the following visual stimuli for aerial aquatic insects: (1) lamplit matte black canvas inducing phototaxis alone, (2) unlit shiny black plastic sheet eliciting polarotaxis alone, (3) lamplit shiny black plastic sheet inducing simultaneously phototaxis and polarotaxis, and (4) unlit matte black canvas as a visually unattractive control. The unlit matte black canvas trapped only a negligible number (13) of water insects. The sum (16,432) of the total numbers of water beetles and bugs captured on the lamplit matte black canvas (7,922) and the unlit shiny black plastic sheet (8,510) was much smaller than the total catch (29,682) caught on the lamplit shiny black plastic sheet. This provides experimental evidence for the synergistic interaction of phototaxis (elicited by the unpolarized direct lamplight) and polarotaxis (induced by the strongly and horizontally polarized plastic-reflected light) in the investigated aquatic insects. Thus, horizontally polarizing artificial lamplit surfaces can function as an effective ecological trap due to this synergism of optical cues, especially in the urban environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Anderson MJ (2001) A new method for non-parametric multivariate analysis of variance. Austral Ecol 26:32–46

    Google Scholar 

  • Aukema B, Rieger C (ed) (1995) Catalogue of the Heteroptera of the Palearctic Region. Enicocephalomorpha, Dipsocoromorpha, Nepomorpha, Gerromorpha and Leptopodomorpha. Vol. I, The Netherlands: The Netherlands Entomological Society, Amsterdam

  • Benedek P, Jászai VE (1972) On the migration of Corixidae (Heteroptera) based on light trap data. Acta Zool Acad Sci Hung 19:1–9

    Google Scholar 

  • Bernáth B, Szedenics G, Molnár G, Kriska G, Horváth G (2001) Visual ecological impact of “shiny black anthropogenic products” on aquatic insects: oil reservoirs and plastic sheets as polarized traps for insects associated with water. Arch Nat Conservat Landsc Res 40:89–109

    Google Scholar 

  • Bernáth B, Szedenics G, Wildermuth H, Horváth G (2002) How can dragonflies discern bright and dark waters from a distance? The degree of polarization of reflected light as a possible cue for dragonfly habitat selection. Freshwater Biol 47:1707–1719

    Article  Google Scholar 

  • Bernáth B, Gál J, Horváth G (2004) Why is it worth flying at dusk for aquatic insects? Polarotactic water detection is easiest at low solar elevations. J Exp Biol 207:755–765

    Article  PubMed  Google Scholar 

  • Bilton DT, Freeland JR, Okamura B (2001) Dispersal in freshwater invertebrates. Annu Rev Ecol Syst 32:159–181

    Article  Google Scholar 

  • Boda P, Csabai Z (2009) Seasonal and diel dispersal activity characteristics of Sigara lateralis (Leach, 1817) (Heteroptera: Corixidae) with special emphasis of the possible environmental factors and breeding state. Aquat Insect 31:301–314

    Article  Google Scholar 

  • Boda P, Csabai Z (2013) When do beetles and bugs fly? A unified scheme for describing seasonal flight behaviour of highly dispersing primary aquatic insects. Hydrobiologia 703:133–147

    Article  Google Scholar 

  • Choi H, Kim H, Kim JG (2009) Landscape analysis of the effects of artificial lighting around wetland habitats on the giant water bug Lethocerus deyrollei in Jeju Island. J Ecol Field Biol 32:83–86

    Article  Google Scholar 

  • Csabai Z (2000) Vízibogarak kishatározója I. (Coleoptera: Haliplidae, Hygrobiidae, Dytiscidae, Noteridae, Gyrinidae). [A guide for the identification of water beetles of Hungary, I. (in Hungarian with English abstract)]. Budapest, In: Vízi Természet- és Környezetvédelem 15., Környezetgazdálkodási Intézet

  • Csabai Z (2003) Vízibogarak kishatározója III. (Kiegészítő kötet) [A guide for the identification of water beetles of Hungary, III. Supplement band (in Hungarian with English abstract)]. Budapest, In: Vízi Természet és Környezetvédelem 17., Környezetgazdálkodási Intézet

  • Csabai Z, Gidó Zs, Szél Gy (2002) Vízibogarak kishatározója II. (Coleoptera: Georissidae, Spercheidae, Hydrochidae, Helophoridae, Hydrophilidae) [A guide for the identification of water beetles of Hungary, II. (in Hungarian with English abstract)]. Budapest, In: Vízi Természet- és Környezetvédelem 16., Környezetgazdálkodási Intézet

  • Csabai Z, Boda P, Bernáth B, Kriska G, Horváth G (2006) A “polarization sun-dial” dictates the optimal time of day for dispersal by flying aquatic insects. Freshwater Biol 51:1341–1350

    Article  Google Scholar 

  • Csabai Z, Kálmán Z, Szivák I, Boda P (2012) Diel flight behaviour and dispersal patterns of aquatic Coleoptera and Heteroptera species with special emphasis on the importance of seasons. Naturwissenschaften 99:751–765

    Article  CAS  PubMed  Google Scholar 

  • Frank KD (2006) Effects of artificial night light on moths. In: Rich C, Longcore T (eds) Ecological consequences of artificial night lighting. Island, Washington, pp 345–364

    Google Scholar 

  • Hammer O, Harper DAT, Ryan PD (2001) PAST: paleontological statistics software package for education and data analysis. Palaeontologia Electronica 4(1):9

    Google Scholar 

  • Horváth G, Varjú D (1997) Polarization pattern of freshwater habitats recorded by video polarimetry in red, green and blue spectral ranges and its relevance for water detection by aquatic Insects. J Exp Biol 200:1155–1163

    Google Scholar 

  • Horváth G, Varjú D (2004) Polarized light in animal vision—polarization patterns in nature. Springer, Heidelberg

    Book  Google Scholar 

  • Horváth G, Zeil J (1996) Kuwait oil lakes as insect traps. Nature 379:303–304

    Article  Google Scholar 

  • Horváth G, Malik P, Kriska G, Wildermuth H (2007) Ecological traps for dragonflies in a cemetery: the attraction of Sympetrum species (Odonata: Libellulidae) by horizontally polarizing black gravestones. Freshwater Biol 52:1700–1709

    Article  Google Scholar 

  • Horváth G, Majer J, Horváth L, Szivák I, Kriska G (2008) Ventral polarization vision in tabanids: horseflies and deerflies (Diptera: Tabanidae) are attracted to horizontally polarized light. Naturwissenschaften 95:1093–1100

    Article  PubMed  Google Scholar 

  • Horváth G, Kriska G, Malik P, Robertson B (2009) Polarized light pollution: a new kind of ecological photopollution. Front Ecol Environ 7:317–325

    Article  Google Scholar 

  • Horváth G, Blahó M, Egri Á, Kriska G, Seres I, Robertson B (2010a) Reducing the maladaptive attractiveness of solar panels to polarotactic insects. Conserv Biol 24:1644–1653

    Article  PubMed  Google Scholar 

  • Horváth G, Kriska G, Malik P, Hegedüs R, Neumann L, Åkesson S, Robertson B (2010b) Asphalt surfaces as ecological traps for water-seeking polarotactic insects: how can the polarized light pollution of asphalt surfaces be reduced? Environmental Remediation Technologies, Regulations and Safety. Nova Science, New York

    Google Scholar 

  • Horváth G, Móra A, Bernáth B, Kriska G (2011) Polarotaxis in non-biting midges: female chironomids are attracted to horizontally polarized light. Physiol Behav 104:1010–1015

    Article  PubMed  Google Scholar 

  • Jansson A (1986) The Corixidae (Heteroptera) of Europe and some adjacent regions. Acta Entomol Fenn 47:1–94

    Google Scholar 

  • Klecka J, Boukal DS (2011) Lazy ecologist’s guide to water beetle diversity: which sampling methods are the best? Ecol Indic 11:500–508

    Article  Google Scholar 

  • Kriska G, Horváth G, Andrikovics S (1998) Why do mayflies lay their eggs en masse on dry asphalt roads? Water-imitating polarized light reflected from asphalt attracts Ephemeroptera. J Exp Biol 201:2273–2286

    CAS  PubMed  Google Scholar 

  • Kriska G, Csabai Z, Boda P, Malik P, Horváth G (2006) Why do red and dark-coloured cars lure aquatic insects? The attraction of water insects to car paintwork explained by reflection-polarisation signals. Proc R Soc Lond B 273:1667–1771

    Article  Google Scholar 

  • Kriska G, Malik P, Szivák I, Horváth G (2008) Glass buildings on river banks as “polarized light traps” for mass-swarming polarotactic caddis flies. Naturwissenschaften 95:461–467

    Article  CAS  PubMed  Google Scholar 

  • Kriska G, Bernáth B, Farkas R, Horváth G (2009) Degrees of polarization of reflected light eliciting polarotaxis in dragonflies (Odonata), mayflies (Ephemeroptera) and tabanid flies (Tabanidae). J Insect Physiol 55:1167–1173

    Article  CAS  PubMed  Google Scholar 

  • Lerner A, Meltser N, Sapir N, Erlick C, Shashar N, Broza M (2008) Reflected polarization guides chironomid females to oviposition sites. J Exp Biol 211:3536–3543

    Article  PubMed  Google Scholar 

  • Longcore T, Rich C (2004) Ecological light pollution. Front Ecol Environ 2:191–198

    Article  Google Scholar 

  • Malik P, Hegedüs R, Kriska G, Horváth G (2008) Imaging polarimetry of glass buildings: why do vertical glass surfaces attract polarotactic insects? Appl Optics 47:4361–4374

    Article  Google Scholar 

  • Málnás K, Polyák L, Prill É, Hegedüs R, Kriska G, Dévai G, Horváth G, Lengyel S (2011) Bridges as optical barriers and population disruptors for the mayfly Palingenia longicauda: an overlooked threat to freshwater biodiversity? J Insect Conserv 15:823–832

    Article  Google Scholar 

  • Nowinszky L (2003) The handbook of light trapping. Savaria University Press, Szombathely

    Google Scholar 

  • Nowinszky L (2004) Nocturnal illumination and night flying insects. Appl Ecol Environ Res 2:17–52

    Google Scholar 

  • Podani J (2000) Introduction to the exploration of multivariate biological data. Backhuys, Leiden

    Google Scholar 

  • Rich C, Longcore T (2006) Ecological consequences of artificial night lighting. Island, Washington, DC

    Google Scholar 

  • Scapini F, Mascagni A, Sforzi A (1993) Zonal recovery and orientation in respect to various stimuli of Heterocerus fenestratus Thunberg, 1784 (Coleoptera, Heteroceridae). J Insect Physiol 39:665–675

    Article  Google Scholar 

  • Schwind R (1991) Polarization vision in water insects and insects living on a moist substrate. J Comp Physiol A 169:531–540

    Article  Google Scholar 

  • Schwind R (1995) Spectral regions in which aquatic insects see reflected polarized light. J Comp Physiol A 177:439–448

    Article  Google Scholar 

  • Shashar N, Sabbah S, Aharoni N (2005) Migrating locusts can detect polarized reflections to avoid flying over the sea. Biology Letters 1:472–475

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Weigelhofer G, Weissmair W, Waringer J (1992) Night migration activity and the influence of meteorological parameters on light-trapping for aquatic Heteroptera. Zool Anz 229:209–218

    Google Scholar 

  • Wildermuth H (1998) Dragonflies recognize the water of rendezvous and oviposition sites by horizontally polarized light: a behavioural field test. Naturwissenschaften 85:297–302

    Article  CAS  Google Scholar 

  • Wildermuth H, Horváth G (2005) Visual deception of a male Libellula depressa by the shiny surface of a parked car (Odonata: Libellulidae). Int J Odonatol 8:97–105

    Article  Google Scholar 

  • Yee DA, Taylor S, Vamosi SM (2009) Beetle and plant density as cues initiating dispersal in two species of adult predaceous diving beetles. Oecologia 160:25–36

    Article  PubMed  Google Scholar 

  • Zar J (2010) Biostatistical analysis. Prentice Hall Inc, Upper Saddle River

    Google Scholar 

Download references

Acknowledgments

We thank Judit Csaba, Judit Horváth, Bence Kovács, Erika Mihaliczku, Barbara Palombi, Renáta Tóth, Zsuzsanna Urbán and Vivien Viski (University of Debrecen, Hungary) for their extensive help during our field experiment. Gábor Horváth is grateful to the German Alexander von Humboldt Foundation for the 3-month research fellowship 3.3-UNG/1073032 STP from 1 June to 31 August 2013 in the University of Regensburg.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pál Boda.

Additional information

Communicated by: Sven Thatje

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 35.9 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boda, P., Horváth, G., Kriska, G. et al. Phototaxis and polarotaxis hand in hand: night dispersal flight of aquatic insects distracted synergistically by light intensity and reflection polarization. Naturwissenschaften 101, 385–395 (2014). https://doi.org/10.1007/s00114-014-1166-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00114-014-1166-2

Keywords

Navigation