Original Paper


, Volume 100, Issue 1, pp 51-67

First online:

A prehistoric tsunami induced long-lasting ecosystem changes on a semi-arid tropical island—the case of Boka Bartol (Bonaire, Leeward Antilles)

  • Max EngelAffiliated withInstitute of Geography, Universität zu Köln Email author 
  • , Helmut BrücknerAffiliated withInstitute of Geography, Universität zu Köln
  • , Sascha FürstenbergAffiliated withInstitute of Earth Sciences, Friedrich-Schiller-Universität Jena
  • , Peter FrenzelAffiliated withInstitute of Earth Sciences, Friedrich-Schiller-Universität Jena
  • , Anna Maria KonopczakAffiliated withInstitute of Geography, Christian Albrechts-Universität Kiel
  • , Anja ScheffersAffiliated withSouthern Cross GeoScience, Southern Cross University
  • , Dieter KelletatAffiliated withInstitute of Geography, Universität zu KölnInstitute of Geography, Universität Duisburg-Essen
  • , Simon Matthias MayAffiliated withInstitute of Geography, Universität zu Köln
  • , Frank SchäbitzAffiliated withSeminar for Geography and Education, Universität zu Köln
    • , Gerhard DautAffiliated withInstitute of Geography, Friedrich-Schiller-Universität Jena

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access


The Caribbean is highly vulnerable to coastal hazards. Based on their short recurrence intervals over the intra-American seas, high-category tropical cyclones and their associated effects of elevated storm surge, heavy wave impacts, mudslides and floods represent the most serious threat. Given the abundance of historical accounts and trigger mechanisms (strike-slip motion and oblique collision at the northern and southern Caribbean plate boundaries, submarine and coastal landslides, volcanism), tsunamis must be considered as well. This paper presents interdisciplinary multi-proxy investigations of sediment cores (grain size distribution, carbonate content, loss-on-ignition, magnetic susceptibility, microfauna, macrofauna) from Washington-Slagbaai National Park, NW Bonaire (Leeward Antilles). No historical tsunami is recorded for this island. However, an allochthonous marine layer found in all cores at Boka Bartol reveals several sedimentary criteria typically linked with tsunami deposits. Calibrated 14C data from these cores point to a palaeotsunami with a maximum age of 3,300 years. Alternative explanations for the creation of this layer, such as inland flooding during tropical cyclones, cannot entirely be ruled out, though in recent times even the strongest of these events on Bonaire did not deposit significant amounts of sediment onshore. The setting of Boka Bartol changed from an open mangrove-fringed embayment into a poly- to hyperhaline lagoon due to the establishment or closure of a barrier of coral rubble during or subsequent to the inferred event. The timing of the event is supported by further sedimentary evidence from other lagoonal and alluvial archives on Bonaire.


Palaeotsunamis Caribbean Sea Tsunami vs. storm deposits Coastal evolution Hazard assessment Foraminifera Ostracoda