Skip to main content

Advertisement

Log in

Cell-to-cell communication in plants, animals, and fungi: a comparative review

  • Review
  • Published:
Naturwissenschaften Aims and scope Submit manuscript

Abstract

Cell-to-cell communication is a prerequisite for differentiation and development in multicellular organisms. This communication has to be tightly regulated to ensure that cellular components such as organelles, macromolecules, hormones, or viruses leave the cell in a precisely organized way. During evolution, plants, animals, and fungi have developed similar ways of responding to this biological challenge. For example, in higher plants, plasmodesmata connect adjacent cells and allow communication to regulate differentiation and development. In animals, two main general structures that enable short- and long-range intercellular communication are known, namely gap junctions and tunneling nanotubes, respectively. Finally, filamentous fungi have also developed specialized structures called septal pores that allow intercellular communication via cytoplasmic flow. This review summarizes the underlying mechanisms for intercellular communication in these three eukaryotic groups and discusses its consequences for the regulation of differentiation and developmental processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abounit S, Zurzolo C (2012) Wiring through tunneling nanotubes—from electrical signals to organelle transfer. J Cell Sci 125:1089–1098

    Article  PubMed  CAS  Google Scholar 

  • Ahmad S, Chen S, Sun J, Lin X (2003) Connexins 26 and 30 are co-assembled to form gap junctions in the cochlea of mice. Biochem Biophys Res Commun 307:362–368

    Article  PubMed  CAS  Google Scholar 

  • Ai X, Pogwizd SM (2005) Connexin 43 downregulation and dephosphorylation in nonischemic heart failure is associated with enhanced colocalized protein phosphatase type 2A. Circ Res 96:54–63

    Article  PubMed  CAS  Google Scholar 

  • Barton DA, Cole L, Collings DA, Liu DYT, Smith PMC, Day DA, Overall RL (2011) Cell-to-cell transport via the lumen of the endoplasmic reticulum. Plant J 66:806–817

    Article  PubMed  CAS  Google Scholar 

  • Bauer R, Begerow D, Sampaio JP, Weiß M, Oberwinkler F (2006) The simple-septate basidiomycetes: a synopsis. Mycol Prog 5:41–66

    Article  Google Scholar 

  • Beardslee MA, Laing JG, Beyer EC, Saffitz JE (1998) Rapid turnover of connexin43 in the adult rat heart. Circ Res 83:629–635

    Article  PubMed  CAS  Google Scholar 

  • Beckett A (1981a) The ultrastructure and behaviour of nuclei and associated structures within the meiotic cells of Euascomycetes. In: Gull K, Oliver SG (eds) The fungal nucleus: structure, biochemistry and genetics. Cambridge University Press, Cambridge, pp 37–61

    Google Scholar 

  • Beckett A (1981b) The ultrastructure of septal pores and associated structures in the ascogenous hyphae and asci of Sordaria humana. Protoplasma 107:127–147

    Article  Google Scholar 

  • Benedetti EL, Emmelot P (1965) Electron microscopic observations on negatively stained plasma membranes isolated from rat liver. J Cell Biol 26:299–305

    Article  PubMed  CAS  Google Scholar 

  • Bergoffen J, Scherer SS, Wang S, Oronzi Scott M, Bone LJ, Paul DL, Chen K, Lensch MW, Chance PF, Fischbeck KH (1993) Connexin mutations in X-linked Charcot–Marie–Tooth disease. Science 262:2039–2042

    Article  PubMed  CAS  Google Scholar 

  • Berns MW, Aist JR, Wright WH, Liang H (1992) Optical trapping in animal and fungal cells using a tunable, near-infrared titanium-sapphire laser. Exp Cell Res 198:375–378

    Article  PubMed  CAS  Google Scholar 

  • Bloemendal S, Lord KM, Rech C, Hoff B, Engh I, Read ND, Kück U (2010) A mutant defective in sexual development produces aseptate ascogonia. Eukaryot Cell 9:1856–1866

    Article  PubMed  CAS  Google Scholar 

  • Bloemendal S, Bernhards Y, Bartho K, Dettmann A, Voigt O, Teichert I, Seiler S, Wolters DA, Pöggeler S, Kück U (2012) A homologue of the human STRIPAK complex controls sexual development in fungi. Mol Microbiol 84:310–323

    Article  PubMed  CAS  Google Scholar 

  • Bracker CE, Butler EE (1964) Function of septal pore apparatus in Rhizoctonia solani during protoplasmic streaming. J Cell Biol 21:152–157

    Article  PubMed  CAS  Google Scholar 

  • Britz-Cunningham SH, Shah MM, Zuppan CW, Fletcher WH (1995) Mutations of the Connexin43 gap-junction gene in patients with heart malformations and defects of laterality. N Engl J Med 332:1323–1329

    Article  PubMed  CAS  Google Scholar 

  • Bucher GL, Tarina C, Heinlein M, Di Serio F, Meins F Jr, Iglesias VA (2001) Local expression of enzymatically active class I beta-1,3-glucanase enhances symptoms of TMV infection in tobacco. Plant J 28:361–369

    Article  PubMed  CAS  Google Scholar 

  • Buller AHR (1933) Researches on fungi, vol 5. Longman, London

    Google Scholar 

  • Burch-Smith TM, Stonebloom S, Xu M, Zambryski PC (2011) Plasmodesmata during development: re-examination of the importance of primary, secondary, and branched plasmodesmata structure versus function. Protoplasma 248:61–74

    Article  PubMed  CAS  Google Scholar 

  • Caneparo L, Pantazis P, Dempsey W, Fraser SE (2011) Intercellular bridges in vertebrate gastrulation. PLoS One 6:e20230

    Article  PubMed  CAS  Google Scholar 

  • Carr DJ (1976) Historical perspectives on plasmodesmata. In: Gunning BES, Robarts AW (eds) Intercellular communication in plants: studies on plasmodesmata. Springer, Heidelberg, pp 291–295

    Chapter  Google Scholar 

  • Chen P, Hübner W, Spinelli MA, Chen BK (2007) Predominant mode of human immunodeficiency virus transfer between T cells is mediated by sustained Env-dependent neutralization-resistant virological synapses. J Virol 81:12582–12595

    Article  PubMed  CAS  Google Scholar 

  • Chinnery HR, Pearlman E, McMenamin PG (2008) Cutting edge: membrane nanotubes in vivo: a feature of MHC class II + cells in the mouse cornea. J Immunol 180:5779–5783

    PubMed  CAS  Google Scholar 

  • Cilia ML, Jackson D (2004) Plasmodesmata form and function. Curr Opin Cell Biol 16:500–506

    Article  PubMed  CAS  Google Scholar 

  • Citovsky V, Zambryski P (2000) Systemic transport of RNA in plants. Trends Plant Sci 5:52–54

    Article  PubMed  CAS  Google Scholar 

  • Contreras JE, Sánchez HA, Véliz LP, Bukauskas FF, Bennett MV, Sáez JC (2004) Role of connexin-based gap junction channels and hemichannels in ischemia-induced cell death in nervous tissue. Brain Res Rev 47:290–303

    Article  PubMed  CAS  Google Scholar 

  • Corbesier L, Vincent C, Jang S, Fornara F, Fan Q, Searle I, Giakountis A, Farrona S, Gissot L, Turnbull C, Coupland G (2007) FT protein movement contributes to long-distance signaling in floral induction of Arabidopsis. Science 316:1030–1033

    Article  PubMed  CAS  Google Scholar 

  • Das Sarma J, Wang F, Koval M (2002) Targeted gap junction protein constructs reveal connexin-specific differences in oligomerization. J Biol Chem 277:20911–20918

    Article  PubMed  CAS  Google Scholar 

  • Davis DM, Sowinski S (2008) Membrane nanotubes: dynamic long-distance connections between animal cells. Nat Rev Mol Cell Biol 9:431–436

    Article  PubMed  CAS  Google Scholar 

  • de Bary A (1884) Vergleichende Morphologie und Biologie der Pilze, Mycetozoen und Bakterien. Engelmann, Leipzig

    Book  Google Scholar 

  • Deom CM, Oliver MJ, Beachy RN (1987) The 30-kilodalton gene product of tobacco mosaic virus potentiates virus movement. Science 237:389–394

    Article  PubMed  CAS  Google Scholar 

  • Dhavale T, Jedd G (2007) The fungal Woronin body. In: Howard RJ, Gow NAR (eds) The Mycota VIII. Springer, Heidelberg, pp 87–94

    Google Scholar 

  • Dimitrov DS, Willey RL, Sato H, Chang LJ, Blumenthal R, Martin MA (1993) Quantitation of human immunodeficiency virus type 1 infection kinetics. J Virol 67:2182–2190

    PubMed  CAS  Google Scholar 

  • Ding B (1998) Intercellular protein trafficking through plasmodesmata. Plant Mol Biol 38:279–310

    Article  PubMed  CAS  Google Scholar 

  • Ding B, Lucas WJ (1996) Secondary plasmodesmata: biogenesis, special functions, and evolution. In: Smallwood M, Knox P, Bowles D (eds) Membranes: specialized functions in plants. BIOS Scientific, Oxford, pp 489–506

    Google Scholar 

  • Ding B, Haudenshield JS, Willmitzer L, Lucas WJ (1993) Correlation between arrested secondary plasmodesmal development and onset of accelerated leaf senescence in yeast acid invertase transgenic tobacco plants. Plant J 4:179–189

    Article  PubMed  CAS  Google Scholar 

  • Dolan L, Janmaat K, Willemsen V, Linstead P, Poethig S, Roberts K, Scheres B (1993) Cellular organisation of the Arabidopsis thaliana root. Development 119:71–84

    PubMed  CAS  Google Scholar 

  • Ehlers K, Kollmann R (2001) Primary and secondary plasmodesmata: structure, origin, and functioning. Protoplasma 216:1–30

    Article  PubMed  CAS  Google Scholar 

  • Elias LAB, Kriegstein AR (2008) Gap junctions: multifaceted regulators of embryonic cortical development. Trends Neurosci 31:243–250

    Article  PubMed  CAS  Google Scholar 

  • Engh I, Würtz C, Witzel-Schlömp K, Zhang HY, Hoff B, Nowrousian M, Rottensteiner H, Kück U (2007) The WW domain protein PRO40 is required for fungal fertility and associates with Woronin bodies. Eukaryot Cell 6:831–843

    Article  PubMed  CAS  Google Scholar 

  • Esser K (1982) Cryptogams—cyanobacteria, algae, fungi, lichens. Cambridge University Press, London

    Google Scholar 

  • Eugenin EA, Gaskill PJ, Berman JW (2009) Tunneling nanotubes (TNT) are induced by HIV-infection of macrophages: a potential mechanism for intercellular HIV trafficking. Cell Immunol 254:142–148

    Article  PubMed  CAS  Google Scholar 

  • Faulkner CR, Blackman LM, Cordwell SJ, Overall RL (2005) Proteomic identification of putative plasmodesmatal proteins from Chara corallina. Proteomics 5:2866–2875

    Article  PubMed  CAS  Google Scholar 

  • Faulkner C, Akman OE, Bell K, Jeffree C, Oparka K (2008) Peeking into pit fields: a multiple twinning model of secondary plasmodesmata formation in tobacco. Plant Cell 20:1504–1518

    Article  PubMed  CAS  Google Scholar 

  • Fisher DB (1999) The estimated pore diameter for plasmodesmal channels in the Abutilon nectary trichome should be about 4 nm, rather than 3 nm. Planta 208:299–300

    Article  CAS  Google Scholar 

  • Fleissner A, Glass NL (2007) SO, a protein involved in hyphal fusion in Neurospora crassa, localizes to septal plugs. Eukaryot Cell 6:84–94

    Article  PubMed  CAS  Google Scholar 

  • Fleissner A, Sarkar S, Jacobson DJ, Roca MG, Read ND, Glass NL (2005) The so locus is required for vegetative cell fusion and postfertilization events in Neurospora crassa. Eukaryot Cell 4:920–930

    Article  PubMed  CAS  Google Scholar 

  • Franceschi VR, Ding B, Lucas WJ (1994) Mechanism of plasmodesmata formation in characean algae in relation to evolution of intercellular communication in higher plants. Planta 192:347–358

    Article  Google Scholar 

  • Gerdes HH, Carvalho RN (2008) Intercellular transfer mediated by tunneling nanotubes. Curr Opin Cell Biol 20:470–475

    Article  PubMed  CAS  Google Scholar 

  • Gerdes HH, Bukoreshtliev NV, Barroso JFV (2007) Tunneling nanotubes: a new route for the exchange of components between animal cells. FEBS Lett 581:2194–2201

    Article  PubMed  CAS  Google Scholar 

  • Giesy RM, Day PR (1965) Septal pores of Coprinus lagopus in relation to nuclear migration. Am J Bot 52:287–293

    Article  Google Scholar 

  • Goodenough DA (1974) Bulk isolation of mouse hepatocyte gap junctions. J Cell Biol 61:557–563

    Article  PubMed  CAS  Google Scholar 

  • Goodenough DA, Paul DL (2003) Beyond the gap: functions of unpaired connexon channels. Nat Rev Mol Cell Biol 4:285–294

    Article  PubMed  CAS  Google Scholar 

  • Gousset K, Schiff E, Langevin C, Marijanovic Z, Caputo A, Browman DT, Chenouard N, de Chaumont F, Martino A, Enninga J, Olivo-Marin JC, Männel D, Zurzolo C (2009) Prions hijack tunnelling nanotubes for intercellular spread. Nat Cell Biol 11:328–336

    Article  PubMed  CAS  Google Scholar 

  • Graham LE, Kaneko Y (1991) Subcellular structures of relevance to the origin of land plants (Embryophytes) from green algae. Crit Rev Plant Sci 10:323–342

    Article  Google Scholar 

  • Graham LE, Delwiche CF, Mishler BD (1991) Phylogenetic connections between the ‘green algae’ and the ‘bryophytes’. Adv Bryol 4:213–244

    Google Scholar 

  • Grebe M (2012) The patterning of epidermal hairs in Arabidopsis—updated. Curr Opin Plant Biol 15:31–37

    Article  PubMed  CAS  Google Scholar 

  • Grifa A, Wagner CA, D’Ambrosio L, Melchionda S, Bernardi F, Lopez-Bigas N, Rabionet R, Arbones M, Monica MD, Estivill X, Zelante L, Lang F, Gasparini P (1999) Mutations in GJB6 cause nonsyndromic autosomal dominant deafness at DFNA3 locus. Nat Genet 23:16–18

    PubMed  CAS  Google Scholar 

  • Guého E, Smith MT, de Hoog GS, Billon-Grand G, Christen R, Batenburg-van der Vegte WH (1992) Contributions to a revision of the genus Trichosporon. AntonLeeuw 61:289–316

    Google Scholar 

  • Gull K (1976) Differentiation of septal ultrastructure according to cell type in the basidiomycete, Agrocybe praecox. J Ultrastruct Res 54:89–94

    Article  PubMed  CAS  Google Scholar 

  • Gull K (1978) Form and function of septa in filamentous fungi. In: Smith JE, Berry DR (eds) The filamentous fungi. III. Developmental mycology. Wiley, New York, pp 78–93

    Google Scholar 

  • Gunning BES, Robarts AW (1976) Intercellular communication in plants: studies on plasmodesmata. Springer, Berlin

    Book  Google Scholar 

  • Gurke S, Barroso JFV, Gerdes HH (2008) The art of cellular communication: tunneling nanotubes bridge the divide. Histochem Cell Biol 129:539–550

    Article  PubMed  CAS  Google Scholar 

  • Guseman JM, Lee JS, Bogenschutz NL, Peterson KM, Virata RE, Xie B, Kanaoka MM, Hong ZL, Torii KU (2010) Dysregulation of cell-to-cell connectivity and stomatal patterning by loss-of-function mutation in Arabidopsis CHORUS (GLUCAN SYNTHASE-LIKE 8). Development 137:1731–1741

    Article  PubMed  CAS  Google Scholar 

  • Harris AL (2001a) Emerging issues of connexin channels: biophysics fills the gap. Q Rev Biophys 34:325–472

    PubMed  CAS  Google Scholar 

  • Harris SD (2001b) Septum formation in Aspergillus nidulans. Curr Opin Microbiol 4:736–739

    Article  PubMed  CAS  Google Scholar 

  • Hashimoto T, Kishi T, Yoshida N (1964) Demonstration of microspores in fungal cross-wall. Nature 202:1353

    Article  PubMed  CAS  Google Scholar 

  • Hashimoto T, Morgan J, Conti SF (1973) Morphogenesis and ultrastructure of Geotrichum candidum septa. J Bacteriol 116:447–455

    PubMed  CAS  Google Scholar 

  • Heath MC, Heath IB (1975) Ultrastructural changes associated with the haustorial mother cell septum during haustorium formation in Uromyces phaseoli var. vignae. Protoplasma 84:297–314

    Article  Google Scholar 

  • Helariutta Y, Fukaki H, Wysocka-Diller J, Nakajima K, Jung J, Sena G, Hauser MT, Benfey PN (2000) The SHORT-ROOT gene controls radial patterning of the Arabidopsis root through radial signaling. Cell 101:555–567

    Article  PubMed  CAS  Google Scholar 

  • Hepler PK (1982) Endoplasmic reticulum in the formation of the cell plate and plasmodesmata. Protoplasma 111:121–133

    Article  Google Scholar 

  • Hibbett DS, Binder M, Bischoff JF, Blackwell M, Cannon PF, Eriksson OE, Huhndorf S, James T, Kirk PM, Lücking R, Lumbsch HT, Lutzoni F, Matheny PB, Mclaughlin DJ, Powell MJ, Redhead S, Schoch CL, Spatafora JW, Stalpers JA, Vilgalys R, Aime MC, Aptroot A, Bauer R, Begerow D, Benny GL, Castlebury LA, Crous PW, Dai YC, Gams W, Geiser DM, Griffith GW, Gueidan C, Hawksworth DL, Hestmark G, Hosaka K, Humber RA, Hyde KD, Ironside JE, Koljalg U, Kurtzman CP, Larsson KH, Lichtwardt R, Longcore J, Miadlikowska J, Miller A, Moncalvo JM, Mozley-Standridge S, Oberwinkler F, Parmasto E, Reeb V, Rogers JD, Roux C, Ryvarden L, Sampaio JP, Schüssler A, Sugiyama J, Thorn RG, Tibell L, Untereiner WA, Walker C, Wang Z, Weir A, Weiss M, White MM, Winka K, Yao YJ, Zhang N (2007) A higher-level phylogenetic classification of the fungi. Mycol Res 111:509–547

    Article  PubMed  Google Scholar 

  • Huang T, Böhlenius H, Eriksson S, Parcy F, Nilsson O (2005) The mRNA of the Arabidopsis gene FT moves from leaf to shoot apex and induces flowering. Science 309:1694–1696

    Article  PubMed  CAS  Google Scholar 

  • Jackson D (2002) Double labeling of KNOTTED1 mRNA and protein reveals multiple potential sites of protein trafficking in the shoot apex. Plant Physiol 129:1423–1429

    Article  PubMed  CAS  Google Scholar 

  • Jackson D, Veit B, Hake S (1994) Expression of maize Knotted1 related homeobox genes in the shoot apical meristem predicts patterns of morphogenesis in the vegetative shoot. Development 120:405–413

    CAS  Google Scholar 

  • Jedd G (2010) Fungal evo-devo: organelles and multicellular complexity. Trends Cell Biol 21:12–19

    Article  PubMed  CAS  Google Scholar 

  • Jedd G, Chua NH (2000) A new self-assembled peroxisomal vesicle required for efficient resealing of the plasma membrane. Nat Cell Biol 2:226–231

    Article  PubMed  CAS  Google Scholar 

  • Jorgensen RA, Atkinson RG, Forster RLS, Lucas WJ (1998) An RNA-based information superhighway in plants. Science 279:1486–1487

    Article  PubMed  CAS  Google Scholar 

  • Kelsell DP, Dunlop J, Stevens HP, Lench NJ, Liang JN, Parry G, Mueller RF, Leigh IM (1997) Connexin 26 mutations in hereditary non-syndromic sensorineural deafness. Nature 387:80–83

    Article  PubMed  CAS  Google Scholar 

  • Kim JY (2005) Regulation of short-distance transport of RNA and protein. Curr Opin Plant Biol 8:45–52

    Article  PubMed  CAS  Google Scholar 

  • Kim I, Cho E, Crawford K, Hempel FD, Zambryski PC (2005a) Cell-to-cell movement of GFP during embryogenesis and early seedling development in Arabidopsis. Proc Natl Acad Sci USA 102:2227–2231

    Article  PubMed  CAS  Google Scholar 

  • Kim I, Kobayashi K, Cho E, Zambryski PC (2005b) Subdomains for transport via plasmodesmata corresponding to the apical–basal axis are established during Arabidopsis embryogenesis. Proc Natl Acad Sci USA 102:11945–11950

    Article  PubMed  CAS  Google Scholar 

  • Kizana E, Cingolani E, Marbán E (2009) Non-cell-autonomous effects of vector-expressed regulatory RNAs in mammalian heart cells. Gene Ther 16:1163–1168

    Article  PubMed  CAS  Google Scholar 

  • Kollmann R, Glockmann C (1985) Studies on graft unions. I. Plasmodesmata between cells of plants belonging to different unrelated taxa. Protoplasma 124:224–235

    Article  Google Scholar 

  • Kollmann R, Glockmann C (1991) Studies on graft unions. III. On the mechanism of secondary formation of plasmodesmata at the graft interface. Protoplasma 165:71–85

    Article  Google Scholar 

  • Kong D, Karve R, Willet A, Chen MK, Oden J, Shpak ED (2012) Regulation of plasmodesmatal permeability and stomatal patterning by the glycosyltransferase-like protein KOBITO1. Plant Physiol 159:156–168

    Article  PubMed  CAS  Google Scholar 

  • Kurata T, Ishida T, Kawabata-Awai C, Noguchi M, Hattori S, Sano R, Nagasaka R, Tominaga R, Koshino-Kimura Y, Kato T, Sato S, Tabata S, Okada K, Wada T (2005) Cell-to-cell movement of the CAPRICE protein in Arabidopsis root epidermal cell differentiation. Development 132:5387–5398

    Article  PubMed  CAS  Google Scholar 

  • Kuratsu M, Taura A, Shoji J, Kikuchi S, Arioka M, Kitamoto K (2007) Systematic analysis of SNARE localization in the filamentous fungus Aspergillus oryzae. Fungal Genet Biol 44:1310–1323

    Article  PubMed  CAS  Google Scholar 

  • Kwiatkowska M (2003) Plasmodesmal changes are related to different developmental stages of antheridia of Chara species. Protoplasma 222:1–11

    Article  PubMed  CAS  Google Scholar 

  • Kwiatkowska M, Maszewski J (1976) Plasmodesmata between synchronously and asynchronously developing cells of antheridial filaments of Chara vulgaris L. Protoplasma 87:317–327

    Article  Google Scholar 

  • Laird DW (2006) Life cycle of connexins in health and disease. Biochem J 394:527–543

    Article  PubMed  CAS  Google Scholar 

  • Laird DW (2010) The gap junction proteome and its relationship to disease. Trends Cell Biol 20:92–101

    Article  PubMed  CAS  Google Scholar 

  • Laux T, Wurschum T, Breuninger H (2004) Genetic regulation of embryonic pattern formation. Plant Cell 16:190–202

    Article  Google Scholar 

  • Leithe E, Rivedal E (2007) Ubiquitination of gap junction proteins. J Membr Biol 217:43–51

    Article  PubMed  CAS  Google Scholar 

  • Leonard DA, Zaitlin M (1982) A temperature-sensitive strain of tobacco mosaic virus defective in cell-to-cell movement generates an altered viral-coded protein. Virology 117:416–424

    Article  PubMed  CAS  Google Scholar 

  • Levy A, Erlanger M, Rosenthal M, Epel BL (2007a) A plasmodesmata-associated beta-1,3-glucanase in Arabidopsis. Plant J 49:669–682

    Article  PubMed  CAS  Google Scholar 

  • Levy A, Guenoune-Gelbart D, Epel BL (2007b) beta-1,3-Glucanases: plasmodesmal gate keepers for intercellular communication. Plant Signal Behav 2:404–407

    Article  PubMed  Google Scholar 

  • Lim PK, Bliss SA, Patel SA, Taborga M, Dave MA, Gregory LA, Greco SJ, Bryan M, Patel PS, Rameshwar P (2011) Gap junction-mediated import of microRNA from bone marrow stromal cells can elicit cell cycle quiescence in breast cancer cells. Cancer Res 71:1550–1560

    Article  PubMed  CAS  Google Scholar 

  • Lo CW, Gilula NB (1979a) Gap junctional communication in the post-implantation mouse embryo. Cell 18:411–422

    Article  PubMed  CAS  Google Scholar 

  • Lo CW, Gilula NB (1979b) Gap junctional communication in the pre-implantation mouse embryo. Cell 18:399–409

    Article  PubMed  CAS  Google Scholar 

  • Lo CW, Gilula NB (2000) Gap junctions in development. In: Hertzberg EL (ed) Gap junctions. Elsevier, Amsterdam, pp 193–219

    Chapter  Google Scholar 

  • Lough TJ, Lucas WJ (2006) Integrative plant biology: role of phloem long-distance macromolecular trafficking. Annu Rev Plant Biol 57:203–232

    Article  PubMed  CAS  Google Scholar 

  • Lucas WJ, Ding B, Van der Schoot C (1993) Plasmodesmata and the supracellular nature of plants. New Phytol 125:435–476

    Article  Google Scholar 

  • Lucas WJ, Bouché-Pillon S, Jackson DP, Nguyen L, Baker L, Ding B, Hake S (1995) Selective trafficking of KNOTTED1 homeodomain protein and its mRNA through plasmodesmata. Science 270:1980–1983

    Article  PubMed  CAS  Google Scholar 

  • Lucas WJ, Yoo BC, Kragler F (2001) RNA as a long-distance information macromolecule in plants. Nat Rev Mol Cell Biol 2:849–857

    Article  PubMed  CAS  Google Scholar 

  • Lucas WJ, Ham BK, Kim JY (2009) Plasmodesmata—bridging the gap between neighboring plant cells. Trends Cell Biol 19:495–503

    Article  PubMed  CAS  Google Scholar 

  • Lutzoni F, Kauff F, Cox CJ, McLaughlin D, Celio G, Dentinger B, Padamsee M, Hibbett D, James TY, Baloch E, Grube M, Reeb V, Hofstetter V, Schoch C, Arnold AE, Miadlikowska J, Spatafora J, Johnson D, Hambleton S, Crockett M, Shoemaker R, Hambleton S, Crockett M, Shoemaker R, Sung GH, Lücking R, Lumbsch T, O’Donnell K, Binder M, Diederich P, Ertz D, Gueidan C, Hansen K, Harris RC, Hosaka K, Lim YW, Matheny B, Nishida H, Pfister D, Rogers J, Rossman A, Schmitt I, Sipman H, Stone J, Sugiyama J, Yahr R, Vilgalys R (2004) Assembling the fungal tree of life: progress, classification and evolution of subcellular traits. Am J Bot 91:1446–1480

    Article  PubMed  Google Scholar 

  • Maeda S, Tsukihara T (2011) Structure of the gap junction channel and its implications for its biological functions. Cell Mol Life Sci 68:1115–1129

    Article  PubMed  CAS  Google Scholar 

  • Markham PG (1994) Occlusions of septal pores in filamentous fungi. Mycol Res 98:1089–1106

    Article  Google Scholar 

  • Markham P, Collinge AJ (1987) Woronin bodies of filamentous fungi. FEMS Microbiol Rev 46:1–11

    Article  Google Scholar 

  • Maruyama J, Kitamoto K (2007) Differential distribution of the endoplasmic reticulum network in filamentous fungi. FEMS Microbiol Lett 272:1–7

    Article  PubMed  CAS  Google Scholar 

  • Maruyama J, Kikuchi S, Kitamoto K (2006) Differential distribution of the endoplasmic reticulum network as visualized by the BipA-EGFP fusion protein in hyphal compartments across the septum of the filamentous fungus, Aspergillus oryzae. Fungal Genet Biol 43:642–654

    Article  PubMed  CAS  Google Scholar 

  • Marzo L, Gousset K, Zurzolo C (2012) Multifaceted roles of tunneling nanotubes in intercellular communication. Front Physiol 3:1–14

    Article  CAS  Google Scholar 

  • Maule AJ (2008) Plasmodesmata: structure, function and biogenesis. Curr Opin Plant Biol 11:680–686

    Article  PubMed  CAS  Google Scholar 

  • McLaughlin DJ, Frieders EM, Lü H (1995) A microscopist’s view of heterobasidiomycete phylogeny. Stud Mycol 38:91–109

    Google Scholar 

  • Meshi T, Watanabe Y, Saito T, Sugimoto A, Maeda T, Okada Y (1987) Function of the 30-kd protein of tobacco mosaic virus: involvement in cell-to-cell movement and dispensability for replication. EMBO J 6:2557–2563

    PubMed  CAS  Google Scholar 

  • Millard TH, Martin P (2008) Dynamic analysis of filopodial interactions during the zippering phase of Drosophila dorsal closure. Development 135:621–626

    Article  PubMed  CAS  Google Scholar 

  • Momany M, Richardson EA, Van Sickle C, Jedd G (2002) Mapping Woronin body position in Aspergillus nidulans. Mycologia 94:260–266

    Article  PubMed  Google Scholar 

  • Müller WH, Montijn RC, Humbel BM, van Aelst AC, Boon EJ, van der Krift TP, Boekhout T (1998) Structural differences between two types of basidiomycete septal pore caps. Microbiology 144:1721–1730

    Article  PubMed  Google Scholar 

  • Müller WH, Koster AJ, Humbel BM, Ziese U, Verkleij AJ, van Aelst AC, van der Krift TP, Montijn RC, Boekhout T (2000) Automated electron tomography of the septal pore cap in Rhizoctonia solani. J Struct Biol 131:10–18

    Article  PubMed  Google Scholar 

  • Nakajima K, Sena G, Nawy T, Benfey PN (2001) Intercellular movement of the putative transcription factor SHR in root patterning. Nature 413:307–311

    Article  PubMed  CAS  Google Scholar 

  • Ng SK, Liu FF, Lai JL, Low W, Jedd G (2009) A tether for Woronin body inheritance is associated with evolutionary variation in organelle positioning. PLoS Genet 5:e1000521

    Article  PubMed  CAS  Google Scholar 

  • Önfelt B, Nedvetzki S, Benninger RK, Purbhoo MA, Sowinski S, Hume AN, Seabra MC, Neil MA, French PM, Davis DM (2006) Structurally distinct membrane nanotubes between human macrophages support long-distance vesicular traffic or surfing of bacteria. J Immunol 177:8476–8483

    PubMed  Google Scholar 

  • Oparka KJ (2004) Getting the message across: how do plant cells exchange macromolecular complexes? Trends Plant Sci 9:33–41

    Article  PubMed  CAS  Google Scholar 

  • Overall RL, Wolfe J, Gunning BES (1982) Inter-cellular communication in Azolla roots: I. Ultrastructure of plasmodesmata. Protoplasma 111:134–150

    Article  Google Scholar 

  • Perbal MC, Haughn G, Saedler H, Schwarz-Sommer Z (1996) Non-cell-autonomous function of the Antirrhinum floral homeotic proteins DEFICIENS and GLOBOSA is exerted by their polar cell-to-cell trafficking. Development 122:3433–3441

    PubMed  CAS  Google Scholar 

  • Pfenniger A, Wohlwend A, Kwak BR (2011) Mutations in connexin genes and disease. Eur J Clin Invest 41:103–116

    Article  PubMed  CAS  Google Scholar 

  • Phelan P (2005) Innexins: members of an evolutionarily conserved family of gap-junction proteins. Biochim Biophys Acta 1711:225–245

    Article  PubMed  CAS  Google Scholar 

  • Phelan P, Stebbings LA, Baines RA, Bacon JP, Davies JA, Ford C (1998) Drosophila Shaking-B protein forms gap junctions in paired Xenopus oocytes. Nature 391:181–184

    Article  PubMed  CAS  Google Scholar 

  • Pickett-Heaps JD (1968) Ultrastructure and differentiation in Chara sp. III: Formation of the antheridium. Aust J Biol Sci 21:255–274

    Google Scholar 

  • Powell MJ (1974) Fine structure of plasmodesmata in a chytrid. Mycologia 66:606–614

    Article  Google Scholar 

  • Pyrgaki C, Trainor P, Hadjantonakis AK, Niswander L (2010) Dynamic imaging of mammalian neural tube closure. Dev Biol 344:941–947

    Article  PubMed  CAS  Google Scholar 

  • Ramachandran S, Xie LH, John SA, Subramaniam S, Lal R (2007) A novel role for connexin hemichannel in oxidative stress and smoking-induced cell injury. PLoS One 2:e712

    Article  PubMed  CAS  Google Scholar 

  • Raudaskoski M, Rupes I, Timonen S (1991) Immunofluorescence microscopy of the cytoskeleton in filamentous fungi after quick-freezing and low-temperature fixation. Exp Mycol 15:167–173

    Article  Google Scholar 

  • Reaume AG, Desousa PA, Kulkarni S, Langille BL, Zhu DG, Davies TC, Juneja SC, Kidder GM, Rossant J (1995) Cardiac malformation in neonatal mice lacking connexin43. Science 267:1831–1834

    Article  PubMed  CAS  Google Scholar 

  • Robards AW, Lucas WJ (1990) Plasmodesmata. Annu Rev Plant Phys 41:369–419

    Article  Google Scholar 

  • Robertson JD (1963) Occurrence of a subunit pattern in unit membranes of club endings in mauthner cell synapses in goldfish brains. J Cell Biol 19:201–221

    Article  PubMed  CAS  Google Scholar 

  • Ruiz-Medrano R, Xoconostle-Cázares B, Kragler F (2004) The plasmodesmatal transport pathway for homoeotic proteins, silencing signals and viruses. Curr Opin Plant Biol 7:641–650

    Article  PubMed  CAS  Google Scholar 

  • Runeberg P, Raudaskoski M, Virtanen I (1986) Cytoskeletal elements in the hyphae of the homobasidiomycete Schizophyllum commune visualized with indirect immunofluorescence and NBD-phallacidin. Eur J Cell Biol 41:25–32

    Google Scholar 

  • Rustom A, Saffrich R, Markovic I, Walther P, Gerdes HH (2004) Nanotubular highways for intercellular organelle transport. Science 303:1007–1010

    Article  PubMed  CAS  Google Scholar 

  • Scherer SS, Xu YT, Nelles E, Fischbeck K, Willecke K, Bone LJ (1998) Connexin32-null mice develop demyelinating peripheral neuropathy. Glia 24:8–20

    Article  PubMed  CAS  Google Scholar 

  • Scheres B, Wolkenfelt H, Willemsen V, Terlouw M, Lawson E, Dean C, Weisbeek P (1994) Embryonic origin of the Arabidopsis primary root and root-meristem initials. Development 120:2475–2487

    CAS  Google Scholar 

  • Schiefelbein J, Kwak SH, Wieckowski Y, Barron C, Bruex A (2009) The gene regulatory network for root epidermal cell-type pattern formation in Arabidopsis. J Exp Bot 60:1515–1521

    Article  PubMed  CAS  Google Scholar 

  • Sessions A, Yanofsky MF, Weigel D (2000) Cell–cell signaling and movement by the floral transcription factors LEAFY and APETALA1. Science 289:779–781

    Article  PubMed  CAS  Google Scholar 

  • Shaw RM, Fay AJ, Puthenveedu MA, von Zastrow M, Jan YN, Jan LY (2007) Microtubule plus-end-tracking proteins target gap junctions directly from the cell interior to adherens junctions. Cell 128:547–560

    Article  PubMed  CAS  Google Scholar 

  • Sherer NM, Lehmann MJ, Jimenez-Soto LF, Horensavitz C, Pypaert M, Mothes W (2007) Retroviruses can establish filopodial bridges for efficient cell-to-cell transmission. Nat Cell Biol 9:310–315

    Article  PubMed  CAS  Google Scholar 

  • Shestopalov VI, Panchin Y (2008) Pannexins and gap junction protein diversity. Cell Mol Life Sci 65:376–394

    Article  PubMed  CAS  Google Scholar 

  • Söhl G, Willecke K (2003) An update on connexin genes and their nomenclature in mouse and man. Cell Commun Adhes 10:173–180

    PubMed  Google Scholar 

  • Solan JL, Lampe PD (2009) Connexin43 phosphorylation: structural changes and biological effects. Biochem J 419:261–272

    Article  PubMed  CAS  Google Scholar 

  • Soundararajan S, Jedd G, Li XL, Ramos-Pamplona M, Chua NH, Naqvi NI (2004) Woronin body function in Magnaporthe grisea is essential for efficient pathogenesis and for survival during nitrogen starvation stress. Plant Cell 16:1564–1574

    Article  PubMed  CAS  Google Scholar 

  • Sowinski S, Jolly C, Berninghausen O, Purbhoo MA, Chauveau A, Köhler K, Oddos S, Eissmann P, Brodsky FM, Hopkins C, Önfelt B, Sattentau Q, Davis DM (2008) Membrane nanotubes physically connect T cells over long distances presenting a novel route for HIV-1 transmission. Nat Cell Biol 10:211–219

    Article  PubMed  CAS  Google Scholar 

  • Squecco R, Sassoli C, Nuti F, Martinesi M, Chellini F, Nosi D, Zecchi-Orlandini S, Francini F, Formigli L, Meacci E (2006) Sphingosine 1-phosphate induces myoblast differentiation through Cx43 protein expression: a role for a gap junction-dependent and -independent function. Mol Biol Cell 17:4896–4910

    Article  PubMed  CAS  Google Scholar 

  • Stadler R, Lauterbach C, Sauer N (2005) Cell-to-cell movement of green fluorescent protein reveals post-phloem transport in the outer integument and identifies symplastic domains in Arabidopsis seeds and embryos. Plant Physiol 139:701–712

    Article  PubMed  CAS  Google Scholar 

  • Starich TA, Lee RY, Panzarella C, Avery L, Shaw JE (1996) eat-5 and unc-7 represent a multigene family in Caenorhabditis elegans involved in cell–cell coupling. J Cell Biol 134:537–548

    Article  PubMed  CAS  Google Scholar 

  • Steinberg G, Kollmann R (1994) A quantitative analysis of the interspecific plasmodesmata in the non-division walls of the plant chimera Laburnocytisus adamii (Poit.) Schneid. Planta 192:75–83

    Google Scholar 

  • Swann EC, Frieders EM, McLaughlin DJ (2001) Uredinomycetes. In: Mc Laughlin DJ, McLaghlin EG, Lemke PA (eds) The mycota VII, systematics and evolution, part B. Springer, Berlin

    Google Scholar 

  • Taylor JW, Fuller MS (1980) Microtubules, organelle movement, and cross-wall formation at the sporangial–rhizoidal interface in the fungus, Chytridium confervae. Protoplasma 104:201–221

    Article  Google Scholar 

  • Tenney K, Hunt I, Sweigard J, Pounder JI, McClain C, Bowman EJ, Bowman BJ (2000) Hex-1, a gene unique to filamentous fungi, encodes the major protein of the Woronin body and functions as a plug for septal pores. Fungal Genet Biol 31:205–217

    Article  PubMed  CAS  Google Scholar 

  • Tilney LG, Cooke TJ, Connelly PS, Tilney MS (1991) The structure of plasmodesmata as revealed by plasmolysis, detergent extraction, and protease digestion. J Cell Biol 112:739–747

    Article  PubMed  CAS  Google Scholar 

  • Urbanus SL, Martinelli AP, Dinh QD, Aizza LCB, Dornelas MC, Angenent GC, Immink RGH (2010) Intercellular transport of epidermis-expressed MADS domain transcription factors and their effect on plant morphology and floral transition. Plant J 63:60–72

    PubMed  CAS  Google Scholar 

  • Ursitti JA, Petrich BG, Lee PC, Resneck WG, Ye X, Yang J, Randall WR, Bloch RJ, Wang YB (2007) Role of an alternatively spliced form of alpha II-spectrin in localization of connexin 43 in cardiornyocytes and regulation by stress-activated protein kinase. J Mol Cell Cardiol 42:572–581

    Article  PubMed  CAS  Google Scholar 

  • Valiunas V, Polosina YY, Miller H, Potapova IA, Valiuniene L, Doronin S, Mathias RT, Robinson RB, Rosen MR, Cohen IS, Brink PR (2005) Connexin-specific cell-to-cell transfer of short interfering RNA by gap junctions. J Physiol 568:459–468

    Article  PubMed  CAS  Google Scholar 

  • van Bel AJE (2003) The phloem, a miracle of ingenuity. Plant Cell Environ 26:125–149

    Article  Google Scholar 

  • van Bel AJE, Kempers R (1996) The pore/plasmodesm unit, key element in the interplay between sieve element and companion cell. Prog Bot 58:278–291

    Google Scholar 

  • van Bel AJE, Ehlers K, Knoblauch M (2002) Sieve elements caught in the act. Trends Plant Sci 7:126–132

    Article  PubMed  Google Scholar 

  • van der Valk P, Marchant R (1978) Hyphal ultrastructure in fruit-body primordia of basidiomycetes Schizophyllum commune and Coprinus cinereus. Protoplasma 95:57–72

    Article  Google Scholar 

  • van Driel KGA, van Peer AF, Grijpstra J, Wösten HAB, Verkleij AJ, Müller WH, Boekhout T (2008) Septal pore cap protein SPC18, isolated from the basidiomycetous fungus Rhizoctonia solani, also resides in pore plugs. Eukaryot Cell 7:1865–1873

    Article  PubMed  CAS  Google Scholar 

  • van Driel KG, Humbel BM, Verkleij AJ, Stalpers J, Müller WH, Boekhout T (2009) Septal pore complex morphology in the Agaricomycotina (Basidiomycota) with emphasis on the Cantharellales and Hymenochaetales. Mycol Res 113:559–576

    Article  PubMed  Google Scholar 

  • van Peer AF, Wang FF, van Driel KGA, de Jong JF, van Donselaar EG, Müller WH, Boekhout T, Lugones LG, Wösten HAB (2010) The septal pore cap is an organelle that functions in vegetative growth and mushroom formation of the wood-rot fungus Schizophyllum commune. Environ Microbiol 12:833–844

    Article  PubMed  CAS  Google Scholar 

  • Wada T, Kurata T, Tominaga R, Koshino-Kimura Y, Tachibana T, Goto K, Marks MD, Shimura Y, Okada K (2002) Role of a positive regulator of root hair development, CAPRICE, in Arabidopsis root epidermal cell differentiation. Development 129:5409–5419

    Article  PubMed  CAS  Google Scholar 

  • Wahrlich W (1893) Zur Anatomie der Zelle bei Pilzen und Fadenalgen. Botanica Horti Universitatis Imperialis Petropolitanae IV:101–155

  • Wang X, Veruki ML, Bukoreshtliev NV, Hartveit E, Gerdes HH (2010) Animal cells connected by nanotubes can be electrically coupled through interposed gap-junction channels. Proc Natl Acad Sci USA 107:17194–17199

    Article  PubMed  CAS  Google Scholar 

  • Warner AE, Guthrie SC, Gilula NB (1984) Antibodies to gap-junctional protein selectively disrupt junctional communication in the early amphibian embryo. Nature 311:127–131

    Article  PubMed  CAS  Google Scholar 

  • Wei CJ, Xu X, Lo CW (2004) Connexins and cell signaling in development and disease. Annu Rev Cell Dev Biol 20:811–838

    Article  PubMed  CAS  Google Scholar 

  • Wigge PA, Kim MC, Jaeger KE, Busch W, Schmid M, Lohmann JU, Weigel D (2005) Integration of spatial and temporal information during floral induction in Arabidopsis. Science 309:1056–1059

    Article  PubMed  CAS  Google Scholar 

  • Willecke K, Eiberger J, Degen J, Eckardt D, Romualdi A, Guldenagel M, Deutsch U, Söhl G (2002) Structural and functional diversity of connexin genes in the mouse and human genome. Biol Chem 383:725–737

    Article  PubMed  CAS  Google Scholar 

  • Wilsenach R, Kessel M (1965) Micropores in the cross-wall of Geotrichum candidum. Nature 207:545–546

    Article  Google Scholar 

  • Wu XL, Weigel D, Wigge PA (2002) Signaling in plants by intercellular RNA and protein movement. Genes Dev 16:151–158

    Article  PubMed  CAS  Google Scholar 

  • Xu XM, Wang J, Xuan Z, Goldshmidt A, Borrill PG, Hariharan N, Kim JY, Jackson D (2011) Chaperonins facilitate KNOTTED1 cell-to-cell trafficking and stem cell function. Science 333:1141–1144

    Article  PubMed  CAS  Google Scholar 

  • Ye ZC, Wyeth MS, Baltan-Tekkok S, Ransom BR (2003) Functional hemichannels in astrocytes: a novel mechanism of glutamate release. J Neurosci 23:3588–3596

    PubMed  CAS  Google Scholar 

  • Yen MR, Saier MH Jr (2007) Gap junctional proteins of animals: the innexin/pannexin superfamily. Prog Biophys Mol Biol 94:5–14

    Article  PubMed  CAS  Google Scholar 

  • Yuan P, Jedd G, Kumaran D, Swaminathan S, Shio H, Hewitt D, Chua NH, Swaminathan K (2003) A HEX-1 crystal lattice required for Woronin body function in Neurospora crassa. Nat Struct Biol 10:264–270

    Article  PubMed  CAS  Google Scholar 

  • Zani BG, Edelman ER (2010) Cellular bridges: routes for intercellular communication and cell migration. Commun Integr Biol 3:215–220

    Article  PubMed  Google Scholar 

  • Zani BG, Indolfi L, Edelman ER (2010) Tubular bridges for bronchial epithelial cell migration and communication. PLoS One 5:e8930

    Article  PubMed  CAS  Google Scholar 

  • Zeevaart JAD (1976) Physiology of flower formation. Annu Rev Plant Phys 27:321–348

    Article  CAS  Google Scholar 

  • Zhu D, Tan KS, Zhang X, Sun AY, Sun GY, Lee JC (2005) Hydrogen peroxide alters membrane and cytoskeleton properties and increases intercellular connections in astrocytes. J Cell Sci 118:3695–3703

    Article  PubMed  CAS  Google Scholar 

  • Zickler D (2009) Observing meiosis in filamentous fungi: Sordaria and Neurospora. Methods Mol Biol 558:91–114

    Article  PubMed  Google Scholar 

  • Zoidl G, Dermietzel R (2010) Gap junctions in inherited human disease. Pflug Arch Eur J Phy 460:451–466

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Beth Richardson (University of Georgia, USA) for the generous gift of Fig. 2a and Michelle Momany (University of Georgia, USA) for establishing the contact. We also want to thank Robert Bauer (Tübingen, Germany) for providing Fig. 2b and Minou Nowrousian and Ines Teichert for critical reading of the manuscript. We are grateful to our anonymous reviewers, who provided highly valuable suggestions for improving this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrich Kück.

Additional information

Communicated by: Sven Thatje

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bloemendal, S., Kück, U. Cell-to-cell communication in plants, animals, and fungi: a comparative review. Naturwissenschaften 100, 3–19 (2013). https://doi.org/10.1007/s00114-012-0988-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00114-012-0988-z

Keywords

Navigation