Skip to main content
Log in

Bees use three-dimensional information to improve target detection

  • SHORT COMMUNICATION
  • Published:
Naturwissenschaften Aims and scope Submit manuscript

Abstract

Bumblebee detection of a flat circular disc (two-dimensional (2D) presentation) and a disc which was presented 10 cm in front of a structured background (and thus provided three-dimensional (3D) cues) was compared. A dual choice test using a Y-maze apparatus was conducted to estimate the minimum visual angle at which the bees were able to detect the disc. At large visual angles of 15, 10 and 5° bees’ performance between the 2D and the 3D presentation did not differ. However, when the disc subtended 3° at the bee’s eye, the bees performed significantly better when 3D information was available. Overall, bees were able to detect a target subtending a 40% smaller visual angle when it was presented in front of the structured background compared to a 2D presentation. This suggests that previous reports on the limits of target detection in bees using flat stimuli might have underestimated the bees’ ability to locate small flowers under natural conditions. Bees use motion parallax, i.e. the apparent relative motion of a stationary object against a background, for perceiving the third dimension. Our data suggest that bumblebees can integrate information from at least two types of feature detectors, motion and area, to improve single target detection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

References

  • Chittka L, Dyer AG, Bock F, Dornhaus A (2003) Bees trade off foraging speed for accuracy. Nature 424:338

    Article  Google Scholar 

  • Dyer AG, Spaethe J, Prack S (2008) Comparative psychophysics of bumblebee and honeybee colour discrimination and object detection. J Comp Physiol A 194:617–627

    Article  Google Scholar 

  • Giurfa M, Vorobyev MV (1998) The angular range of achromatic target detection by honeybees. J Comp Physiol A 183:101–110

    Article  Google Scholar 

  • Giurfa M, Vorobyev M, Kevan P, Menzel R (1996) Detection of coloured stimuli by honeybees: minimum visual angles and receptor specific contrasts. J Comp Physiol A 178:699–709

    Article  Google Scholar 

  • Giurfa M, Vorobyev M, Brandt R, Posner B, Menzel R (1997) Discrimination of coloured stimuli by honeybees: alternative use of achromatic and chromatic signals. J Comp Physiol A 180:235–243

    Article  Google Scholar 

  • Gumbert A, Kunze J, Chittka L (1999) Floral colour diversity in plant communities, bee colour space and a null model. Proc R Soc B 266:1711–1716

    Article  Google Scholar 

  • Hempel de Ibarra N, Vorobyev M (2009) Flower patterns are adapted for detection by bees. J Comp Physiol A 195:319–323

    Article  Google Scholar 

  • Julesz B (1960) Binocular depth perception of computer-generated patterns. Bell Syst Tech J 39:1125–1162

    Google Scholar 

  • Kevan PG, Baker HG (1983) Insects as flower visitors and pollinators. Ann Rev Entomol 28:407–453

    Article  Google Scholar 

  • Lehrer M (1998) Looking all around: honeybees use different cues in different eye regions. J Exp Biol 201:3275–3292

    PubMed  Google Scholar 

  • Lehrer M, Bischof S (1995) Detection of model flowers by honeybees: the role of chromatic and achromatic contrast. Naturwissenschaften 82:145–147

    Article  CAS  Google Scholar 

  • Macuda T, Gegear RJ, Laverty TM, Timney B (2001) Behavioural assessment of visual acuity in bumblebees (Bombus impatiens). J Exp Biol 204:559–564

    CAS  PubMed  Google Scholar 

  • McKee SP, Watamaniuk SN, Harris JM, Smallman HS, Taylor DG (1997) Is stereopsis effective in breaking camouflage for moving targets? Vis Res 37:2047–2055

    Article  CAS  PubMed  Google Scholar 

  • Menzel R, Shmida A (1993) The ecology of flower colours and the natural colour vision of insect pollinators: the Israeli flora as a study case. Biol Rev 68:81–120

    Article  Google Scholar 

  • Ne’eman G, Kevan PG (2001) The effect of shape parameters on maximal detection distance of model targets by honeybee workers. J Comp Physiol A 187:653–660

    Article  PubMed  Google Scholar 

  • Paulk AC, Phillips-Portillo J, Dacks AM, Fellous JM, Gronenberg W (2008) The processing of color, motion, and stimulus timing are anatomically segregated in the bumblebee brain. J Neurosci 28:6319–6332

    Article  CAS  PubMed  Google Scholar 

  • Paulk AC, Dacks AM, Phillips-Portillo J, Fellous JM, Gronenberg W (2009) Visual processing in the central bee brain. J Neurosci 29:9987–9999

    Article  CAS  PubMed  Google Scholar 

  • Pettigrew JD (1986) The evolution of binocular vision. In: Pettigrew JD, Sanderson KJ, Levick WR (eds) Visual neuroscience. Cambridge University Press, Cambridge, pp 2008–2222

    Google Scholar 

  • Rice WR (1989) Analyzing tables of statistical tests. Evolution 43:223–225

    Article  Google Scholar 

  • Spaethe J, Chittka L (2003) Interindividual variation of eye optics and single object resolution in bumblebees. J Exp Biol 206:3447–3453

    Article  PubMed  Google Scholar 

  • Spaethe J, Tautz J, Chittka L (2001) Visual constraints in foraging bumblebees: flower size and color affect search time and flight behavior. Proc Natl Acad Sci U S A 98:3898–3903

    Article  CAS  PubMed  Google Scholar 

  • Srinivasan MV, Lehrer M, Horridge GA (1990) Visual figure–ground discrimination in the honeybee: the role of motion parallax at boundaries. Proc R Soc Lond 238:331–350

    Article  Google Scholar 

  • Streinzer M, Paulus HF, Spaethe J (2009) Floral colour signal increases short-range detectability of a sexually deceptive orchid to its bee pollinator. J Exp Biol 212:1365–1370

    Article  PubMed  Google Scholar 

  • Vogel S (1954) Blütenbiologische Typen als Elemente der Sippengliederung: Dargestellt anhand der Flora Südafrikas. Botanische Studien 1:1–339

    Google Scholar 

  • Wolf E (1933) Das Verhalten der Bienen gegenüber flimmernden Feldern und bewegten Objekten. Z vergl Physiol 20:151–161

    Article  Google Scholar 

  • Zhang SW, Wang XA, Liu ZL, Srinivasan MV (1990) Visual tracking of moving targets by freely flying honeybees. Vis Neurosci 4:379–386

    Article  CAS  PubMed  Google Scholar 

  • Zhang SW, Srinivasan MV, Collett TS (1995) Convergent processing in honeybee vision: multiple channels for the recognition of shape. Proc Natl Acad Sci U S A 92:3029–3031

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

We thank two anonymous reviewers for their helpful comments on an earlier version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johannes Spaethe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kapustjansky, A., Chittka, L. & Spaethe, J. Bees use three-dimensional information to improve target detection. Naturwissenschaften 97, 229–233 (2010). https://doi.org/10.1007/s00114-009-0627-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00114-009-0627-5

Keywords

Navigation