Skip to main content

Advertisement

Log in

Hibernation and daily torpor minimize mammalian extinctions

  • SHORT COMMUNICATION
  • Published:
Naturwissenschaften Aims and scope Submit manuscript

Abstract

Small mammals appear to be less vulnerable to extinction than large species, but the underlying reasons are poorly understood. Here, we provide evidence that almost all (93.5%) of 61 recently extinct mammal species were homeothermic, maintaining a constant high body temperature and thus energy expenditure, which demands a high intake of food, long foraging times, and thus exposure to predators. In contrast, only 6.5% of extinct mammals were likely heterothermic and employed multi-day torpor (hibernation) or daily torpor, even though torpor is widespread within more than half of all mammalian orders. Torpor is characterized by substantial reductions of body temperature and energy expenditure and enhances survival during adverse conditions by minimizing food and water requirements, and consequently reduces foraging requirements and exposure to predators. Moreover, because life span is generally longer in heterothermic mammals than in related homeotherms, heterotherms can employ a ‘sit-and-wait’ strategy to withstand adverse periods and then repopulate when circumstances improve. Thus, torpor is a crucial but hitherto unappreciated attribute of small mammals for avoiding extinction. Many opportunistic heterothermic species, because of their plastic energetic requirements, may also stand a better chance of future survival than homeothermic species in the face of greater climatic extremes and changes in environmental conditions caused by global warming.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

References

  • Bieber C, Ruf T (2009) Summer dormancy in edible dormice (Glis glis) without energetic constraints. Naturwissenschaften 96:165–171

    Article  PubMed  CAS  Google Scholar 

  • Boyer BB, Barnes BM (1999) Molecular and metabolic aspects of mammalian hibernation. Bioscience 49:713–724

    Article  Google Scholar 

  • Cardillo M (2003) Biological determinants of extinction risk: why are smaller species less vulnerable? Anim Conserv 6:63–69

    Article  Google Scholar 

  • Cardillo M, Mace GM, Gittleman JM, Purvis A (2006) Latent extinction risk and future battlegrounds of mammal conservation. Proc Natl Acad Sci U S A 103:4157–4161

    Article  PubMed  CAS  Google Scholar 

  • Carey HV, Andrews MT, Martin SL (2003) Mammalian hibernation: cellular and molecular responses to depressed metabolism and low temperature. Physiol Rev 83:1153–1181

    PubMed  CAS  Google Scholar 

  • Ceballos G, Ehrlich P (2002) Mammal population losses and the extinction crisis. Science 296:904–907

    Article  PubMed  CAS  Google Scholar 

  • Cooper CE, Geiser F (2008) The “minimal boundary curve for endothermy” as a predictor of heterothermy in mammals and birds: a review. J Comp Physiol B 178:1–8

    Article  PubMed  Google Scholar 

  • Dausmann KH (2008) Hypometabolism in primates: torpor and hibernation. In: Lovegrove BG, McKechnie AE (eds) Hypometabolism in animals: torpor, hibernation and cryobiology. 13th International Hibernation Symposium. University of KwaZulu-Natal, Pietermaritzburg, pp 327–336

    Google Scholar 

  • Dickman CR (1996) Impact of exotic generalist predators on the native fauna of Australia. Wildl Biol 2:185–195

    Google Scholar 

  • Fisher DO, Blomberg S, Owens IPF (2003) Extrinsic versus intrinsic factors in the decline of Australian marsupials. Proc R Soc Lond B 270:1801–1808

    Article  Google Scholar 

  • Flannery TF, Schouten P (2001) A gap in nature. Atlantic Monthly, New York

    Google Scholar 

  • Frank CL, Hood WR (2005) The influences of recent climate change on eastern chipmunk (Tamias striatus) hibernation. 9th International Mammalogical Congress, Abstract S3006, p 126

  • French AR (2008) Patterns of heterothermy in rodents. In: Lovegrove BG, McKechnie AE (eds) Hypometabolism in animals: torpor, hibernation and cryobiology. 13th International Hibernation Symposium. University of KwaZulu-Natal, Pietermaritzburg, pp 337–352

    Google Scholar 

  • Geiser F (1998) Evolution of daily torpor and hibernation in birds and mammals: importance of body size. Clin Exp Pharmacol Physiol 25:736–740

    Article  PubMed  CAS  Google Scholar 

  • Geiser F (2004) Metabolic rate and body temperature reduction during hibernation and daily torpor. Annu Rev Physiol 66:239–274

    Article  PubMed  CAS  Google Scholar 

  • Geiser F (2006) Energetics, thermal biology, and torpor in Australian bats. In: Zubaid A, McCracken GF, Kunz TH (eds) Functional and evolutionary ecology of bats. Oxford University Press, New York, pp 5–22

    Google Scholar 

  • Geiser F (2007) Yearlong hibernation in a marsupial mammal. Naturwissenschaften 94:941–944

    Article  PubMed  CAS  Google Scholar 

  • Geiser F, Broome LS (1993) The effect of temperature on the pattern of torpor in a marsupial hibernator. J Comp Physiol B 163:133–137

    Article  PubMed  CAS  Google Scholar 

  • Geiser F, Körtner G (2009) Hibernation and daily torpor in Australian mammals. Aust Zool. In press

  • Geiser F, Ruf T (1995) Hibernation versus daily torpor in mammals and birds: physiological variables and classification of torpor patterns. Physiol Zool 68:935–966

    Google Scholar 

  • Humphries MM, Thomas DW, Speakman JR (2002) Climate-mediated energetic constraints on the distribution of hibernating mammals. Nature 418:313–316

    Article  PubMed  CAS  Google Scholar 

  • Inouye DW, Barr B, Armitage KB, Inouye BD (2000) Climate change is affecting altitudinal migrants and hibernating species. Proc Natl Acad Sci U S A 97:1630–1633

    Article  PubMed  CAS  Google Scholar 

  • Johnson CN (2006) Australia's mammal extinctions. Cambridge University Press, Melbourne

    Google Scholar 

  • Körtner G, Geiser F (2009) The key to winter survival: daily torpor in a small arid zone marsupial. Naturwissenschaften 96:525–530

    Article  PubMed  Google Scholar 

  • Landry-Cuerrier M, Munro D, Thomas DW, Humphries MM (2008) Climate and resource determinants of fundamental and realized metabolic niches of hibernating chipmunks. Ecology 89:3306–3316

    Article  PubMed  CAS  Google Scholar 

  • Liow LH, Fortelius M, Lintulaakso K, Mannila H, Stenseth NC (2009) Lower extinction in sleep-or-hide mammals. Am Nat 173:264–272

    Article  Google Scholar 

  • Lovegrove BG (2000) Daily heterothermy in mammals: coping with unpredictable environments. In: Heldmaier G, Klingenspor M (eds) Life in the Cold: 11th International Hibernation Symposium. Springer, Berlin, pp 29–40

    Google Scholar 

  • Nicol SC, Andersen NA (2006) The life history of an egg-laying mammal, the echidna (Tachyglossus aculeatus). Ecoscience 14:275–285

    Article  Google Scholar 

  • Nowak RM (1999) Walker's mammals of the world. Johns Hopkins University Press, Baltimore

    Google Scholar 

  • Pavey CR, Eldridge SR, Heywood M (2008) Population dynamics and prey selection of native and introduced predators during a rodent outbreak in arid Australia. J Mammal 89:674–683

    Article  Google Scholar 

  • Ruf T, Heldmaier G (2000) Djungarian hamsters—small granivores with daily torpor. In: Halle S, Stenseth NC (eds) Activity patterns in small mammals. Ecological studies, vol 141. Springer, Berlin, pp 217–234

    Google Scholar 

  • Russell GJ, Brooks TM, McKinney MM, Anderson CG (1998) Present and future taxonomic selectivity in bird and mammal extinctions. Conserv Biol 12:1365–1376

    Article  Google Scholar 

  • Schmid J, Ganzhorn JU (2009) Optional strategies for reduced metabolism in gray mouse lemurs. Naturwissenschaften 96:737–741

    Article  PubMed  CAS  Google Scholar 

  • Sedgeley JA (2003) Roost selection and roosting behaviour in lesser short-tailed bats (Mystacina tuberculata) in comparison with long-tailed bats (Chalinolobus tuberculatus) in Nothofagus forest, Fiordland. New Zealand J Zool 30:227–241

    Google Scholar 

  • Stawski C, Turbill C, Geiser F (2009) Hibernation by a free-ranging subtropical bat (Nyctophilus bifax). J Comp Physiol B 179:433–441

    Article  PubMed  Google Scholar 

  • Tomlinson S, Withers PC, Cooper CE (2007) Hypothermia versus torpor in response to cold stress in the native Australian mouse Pseudomys hermannsburgensis and the introduced house mouse Mus musculus. Comp Biochem Physiol A 148:645–650

    Article  Google Scholar 

  • Turbill C, Körtner G, Geiser F (2003) Natural use of torpor by a small, tree-roosting bat during summer. Physiol Biochem Zool 76:868–876

    Article  PubMed  Google Scholar 

  • Warnecke L, Withers PC, Schleucher E, Maloney SK (2007) Body temperature variation of free-ranging and captive southern brown bandicoots Isoodon obesulus (Marsupialia: Peramelidae). J Therm Biol 32:72–77

    Article  Google Scholar 

  • Wilkinson GS, South JM (2002) Life history, ecology and longevity of bats. Ageing Cell 1:124–131

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Christine Cooper, Chris Johnson, Gerhard Körtner, Bronwyn McAllan, Chris Pavey, Alexander Riek, and Phil Withers for discussions, constructive comments on the manuscript, and statistical advice. The Australian Research Council supported the work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fritz Geiser.

Additional information

Dedicated to the memory of Donald W. Thomas

Rights and permissions

Reprints and permissions

About this article

Cite this article

Geiser, F., Turbill, C. Hibernation and daily torpor minimize mammalian extinctions. Naturwissenschaften 96, 1235–1240 (2009). https://doi.org/10.1007/s00114-009-0583-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00114-009-0583-0

Keywords

Navigation