Skip to main content

Advertisement

Log in

Deviance partitioning of host factors affecting parasitization in the European brown hare (Lepus europaeus)

  • ORIGINAL PAPER
  • Published:
Naturwissenschaften Aims and scope Submit manuscript

Abstract

Deviance partitioning can provide new insights into the ecology of host-parasite interactions. We studied the host-related factors influencing parasite prevalence, abundance, and species richness in European brown hares (Lepus europaeus) from northern Spain. We defined three groups of explanatory variables: host environment, host population, and individual factors. We hypothesised that parasite infection rates and species richness were determined by different host-related factors depending on the nature of the parasite (endo- or ectoparasite, direct or indirect life cycle). To assess the relative importance of these components, we used deviance partitioning, an innovative approach. The explained deviance (ED) was higher for parasite abundance models, followed by those of prevalence and then by species richness, suggesting that parasite abundance models may best describe the host factors influencing parasitization. Models for parasites with a direct life cycle yielded higher ED values than those for indirect life cycle ones. As a general trend, host individual factors explained the largest proportion of the ED, followed by host environmental factors and, finally, the interaction between host environmental and individual factors. Similar hierarchies were found for parasite prevalence, abundance, and species richness. Individual factors comprised the most relevant group of explanatory variables for both types of parasites. However, host environmental factors were also relevant in models for indirect life-cycle parasites. These findings are consistent with the idea of the host as the main habitat of the parasite; whereas, for indirect life-cycle parasites, transmission would be also modulated by environmental conditions. We suggest that parasitization can be used not only as an indicator of individual fitness but also as an indicator of environmental quality for the host. This research underlines the importance of monitoring parasite rates together with environmental, population, and host factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Acevedo P, Vicente J, Alzaga V, Gortázar C (2005) Relationship between bronchopulmonary nematode larvae and relative abundances of Spanish ibex (Capra pyrenaica hispanica) from Castilla-La Mancha, Spain. J Helminthol 79:113–118

    Article  PubMed  CAS  Google Scholar 

  • Acevedo P, Vicente J, Höfle U, Cassinello J, Ruiz-Fons F, Gortázar C (2007a) Estimation of European wild boar relative abundance and aggregation: a novel method in epidemiological risk assessment. Epidemiol Infect 135:519–527

    Article  CAS  Google Scholar 

  • Acevedo P, Cassinello J, Hortal J, Gortázar C (2007b) Invasive exotic aoudad (Ammotragus lervia) as a major threat to native Iberian ibex (Capra pyrenaica): a habitat suitability model approach. Divers Distrib 13:587–597

    Article  Google Scholar 

  • Alzaga V, Vicente J, Villanúa D, Acevedo P, Casas F, Gortázar C (2008) Body condition and parasite intensity correlates with escape capacity in Iberian hares (Lepus granatensis). Behav Ecol Sociobiol 62:769–775

    Article  Google Scholar 

  • Anderson RC (2000) Nematode parasites of vertebrates. Their development and transmission. CABI Publishing, New York

    Google Scholar 

  • Anderson RM, May RM (1978) Regulation and stability of host-parasite population interactions. I. Regulatory processes. J Anim Ecol 47:219–247

    Article  Google Scholar 

  • Arneberg P (2002) Host population density and body mass as determinants of species richness in parasite communities: comparative analyses of directly transmitted nematodes in mammals. Ecography 25:88–94

    Article  Google Scholar 

  • Ash LR, Orihel TC (1991) Parasites: a guide to laboratory procedures and identification. American Society of Clinical Pathology, Chicago

    Google Scholar 

  • Austin MP, Nicholls AO, Margules CR (1990) Measurement of the realized qualitative niche: environmental niche of five Eucalyptus species. Ecol Monogr 60:161–177

    Article  Google Scholar 

  • Barbosa AM, Segivia JM, Vargas JM, Torres J, Real R, Miquel J (2005) Predictors of red fox (Vulpes vulpes) helminth parasite diversity in the provinces of Spain. Wildlife Biology in Practice 1:3–14

    Article  Google Scholar 

  • Barnes RFW, Tapper SC (1985) A method for counting hares by spotlight. J Zool 206:273–276

    Google Scholar 

  • Bordes F, Blumstein DT, Morand S (2007) Rodent sociality and parasite diversity. Biol Lett 3:692–694

    Article  PubMed  Google Scholar 

  • Bordes F, Morand S, Kelt DA, vanVuren DH (2009) Home range and parasite diversity in mammals. Am Nat 173:1–9

    Article  Google Scholar 

  • Brown CR, Brown MB (2004) Empirical measurement of parasite transmission between groups in a colonial bird. Ecology 85:1619–1626

    Article  Google Scholar 

  • Bush AO, Lafferty KD, Lotz JM, Shostak AW (1997) Parasitology meets ecology on its own terms: Margolis et al. revisited. J Parasitol 83(4):575–583

    Article  PubMed  CAS  Google Scholar 

  • Carbonell R, Pérez-Tris J, Tellería JL (2003) Effects of habitat heterogeneity and local adaptation on the body condition of a forest passerine at the edge of its distributional range. Biol J Linn Soc 78(4):479–488

    Article  Google Scholar 

  • Caron A, Cross PC, Du Toit JT (2003) Ecological implications of bovine tuberculosis in African buffalo herds. Ecol Appl 13:1338–1345

    Article  Google Scholar 

  • Carrete M, Grande JM, Tella JL, Sanchez-Zapata JA, Donazara JA, Diaz-Delgado R, Romo A (2007) Habitat, human pressure, and social behaviour: partialling out factors affecting large-scale territory extinction in an endangered vulture. Biol Conserv 136(1):143–154

    Article  Google Scholar 

  • Cattadori IM, Haydon DT, Hudson PJ (2005a) Parasites and climate synchronize red grouse populations. Nature 433:737–741

    Article  PubMed  CAS  Google Scholar 

  • Cattadori IM, Boag B, Bjørnstad ON, Cornell SJ, Hudson PJ (2005b) Peak shift and epidemiology in a seasonal host-nematode system. Proc R Soc Lond B 272:1163–1169

    Article  CAS  Google Scholar 

  • Clark Laboratories (2004) Idrisi Kilimanjaro version 14.02. GIS software package. Clark University, Worcester, UK

    Google Scholar 

  • Clemons C, Rickard LG, Keirans JE, Botzler RG (2000) Evaluation of host preferences by helminths and ectoparasites among black-tailed jackrabbits in northern California. J Wildl Dis 36:555–558

    PubMed  CAS  Google Scholar 

  • Corbin E, Vicente J, Martin-Hernando MP, Acevedo P, Pérez-Rodriguez L, Gortázar C (2008) Spleen mass as a measure of immune strength in mammals. Mamm Rev 38:108–115

    Article  Google Scholar 

  • Cote SD, Stien A, Irvine RJ, Dallas JF, Marshall F, Halvorsen O, Langvatn R, Albon SD (2005) Resistance to abomasal nematodes and individual genetic variability in reindeer. Mol Ecol 14:4159–4168

    Article  PubMed  Google Scholar 

  • Franklin AB, Anderson DR, Gutierrez RJ, Burnham KP (2000) Climate, habitat quality and fitness in northern Spotted owl populations in northwestern California. Ecol Monogr 70(4):539–590

    Google Scholar 

  • Gaston KJ, Lawton JH (1988) Patterns in the distribution and abundance of insect populations. Nature 331:709–712

    Article  Google Scholar 

  • Georgi JR, Georgi ME (1990) Parasitology for veterinarian, 5th edn. W.B. Saunders Company, Philadelphia, Pensilvania

    Google Scholar 

  • Gil Collado J, Guillén Llera JL, Zapatero Ramos LM (1979) Claves para la identificación de los Ixodoidea españoles (adultos). Rev Iber Parasitol 39:107–118

    Google Scholar 

  • Gillespie TR, Chapman CA (2006) Prediction of parasite infection dynamics in primate metapopulations based on attributes of forest fragmentation. Conserv Biol 20:441–448

    Article  PubMed  Google Scholar 

  • Gortázar C, Millán J, Acevedo P, Escudero MA, Marco J, Fernández de Luco D (2007) A large-scale survey of brown hare Lepus europaeus and Iberian hare L. granatensis populations at the limit of their ranges. Wildlife Biol 13:244–250

    Article  Google Scholar 

  • Gregory RD (1997) Comparative studies of host-parasite communities. In: Clayton DH, Moore J (eds) Host-parasite evolution. General principles and avian models. Oxford University Press, New York, pp 198–211

    Google Scholar 

  • Grenfell BT, Dobson AP (1995) Ecology of infectious diseases in natural populations. Cambridge University Press, Cambridge

    Google Scholar 

  • Guègan JF, Morand S, Poulin R (2005) Are there general lwas in parasite community ecology? The emergence of spatial parasitology and epidemiology. In: Thomas F, Renaud F, Guègan JF (eds) Parasitism and ecosystems. Oxford University Press, New York, pp 22–42

    Chapter  Google Scholar 

  • Hatcher MJ, Dick JTA, Dunn AM (2006) How parasites affect interactions between competitors and predators. Ecol Lett 9:1253–1271

    Article  PubMed  Google Scholar 

  • Heikkinen R, Luoto M, Kuussaari M, Poyry J (2005) New insights into butterfly-environment relationships using partitioning methods. Proc R Soc Lond B 272:2203–2210

    Article  Google Scholar 

  • Hirzel A, Helfer V, Métral F (2001) Assessing habitat-suitability models with a virtual species. Ecol Model 145:111–121

    Article  Google Scholar 

  • Hirzel AH, Hausser J, Perrin N (2002a) Biomapper 3.1. Lausanne, Lab. For Conservation Biology. URL: http://www.unil.ch/biomapper

  • Hirzel AH, Hausser J, Chessel D, Perrin N (2002b) Ecological niche factor analysis: how to compute habitat-suitability maps without absence data? Ecology 83:2027–2036

    Google Scholar 

  • Hogue C, Swig B (2007) Habitat quality and endoparasitism in the Pacific sanddab Citharichthys sordidus from Santa Monica Bay, southern California. J Fish Biol 70:231–242

    Article  Google Scholar 

  • Hudson PJ, Dobson AP (1995) Macroparasites: observed patterns in naturally fluctuating animal populations. In: Grenfell BT, Dobson AP (eds) Ecology of infectious diseases in natural populations. Cambridge University Press, Cambridge, pp 144–177

    Google Scholar 

  • Hudson PJ, Rizzoli A, Grenfell BT, Heesterbeek H, Dobson AP (2002) The ecology of wildlife diseases. Oxford University Press, New York

    Google Scholar 

  • Hutchings MR, Gordon IJ, Kyriazakis I (2002) Grazing in heterogeneous environments: infra- and supraparasite distributions determine herbivore grazing decisions. Oecologia 132:453–460

    Article  Google Scholar 

  • Khalil LF, Jones A, Bray RA (1994) Keys to the cestode parasites of vertebrates. CAB International, Wallingford

    Google Scholar 

  • Krebs CJ, Singleton GR (1993) Indexes of condition for small mammals. Aust J Zool 41:317–323

    Article  Google Scholar 

  • Legendre P (1993) Spatial autocorrelation: trouble or new paradigm? Ecology 74:1659–1673

    Article  Google Scholar 

  • Legendre P, Legendre L (1998) Numerical ecology, 3rd edn. Elsevier publishers, Amsterdam, Holland

    Google Scholar 

  • Matson KD (2006) Are there differences in immune function between continental and insular birds? Proc R Soc Lond B 273:2267–2274

    Article  CAS  Google Scholar 

  • Molina X, Casanova JC, Feliu C (1999) Influence of host weight, sex and reproductive status on helminth parasites of the wild rabbit, Oryctolagus cuniculus, in Navarra, Spain. J Helminthol 73:221–225

    PubMed  CAS  Google Scholar 

  • Möller AP, Christe P, Erritzöe J, Mavarez J (1998) Condition, disease and immune defense. Oikos 83:301–306

    Article  Google Scholar 

  • Morand S, Poulin R (1998) Density, body mass and parasite species richness of terrestrial mammals. Evol Ecol 12:717–727

    Article  Google Scholar 

  • Morand S, Poulin R (2000) Nematode parasite species richness and the evolution of spleen size in birds. Can J Zool 78:1356–1360

    Article  Google Scholar 

  • Moreno JM, Pineda FD, Rivas-Martínez S (1990) Climate and vegetation at the Eurosiberian-Mediterranean boundary in the Iberian Peninsula. J Veg Sci 1(2):233–244

    Article  Google Scholar 

  • Murray DL, Keith LB, Cary JR (1998) Do parasitism and nutritional status interact to affect production in snowshoe hares? Ecology 79:1209–1222

    Article  Google Scholar 

  • Ninyerola M, Pons X, Roure JM (2005) Atlas Climático Digital de la Península Ibérica. Metodología y aplicaciones en bioclimatología y geobotánica. Universidad Autónoma de Barcelona, Bellaterra. ISBN 932860-8-7

    Google Scholar 

  • Nunn C, Altizer S, Jones KE, Sechrest W (2003) Comparative tests of parasite species richness in primates. Am Nat 162:597–614

    Article  PubMed  Google Scholar 

  • O’Connor LJ, Walkden-Brown SW, Kahn LP (2006) Ecology of the free-living stages of major trichostrongylid parasites of sheep. Vet Parasitol 142:1–15

    Article  PubMed  Google Scholar 

  • Palomo LJ, Gisbert J (2002) Atlas de los Mamíferos Terrestres de España. Dirección General de Conservación de la Naturaleza-SECEM-SECEMU, Madrid

    Google Scholar 

  • Patterson B, Dick C, Dittmar K (2008) Parasitism by bat flies (Diptera: Streblidae) on neotropical bats: effects of host body size, distribution, and abundance. Parasitol Res 103(5):1091–1100

    Article  PubMed  Google Scholar 

  • Pellerdy L (1974) Coccidia and coccidiosis, 2nd edn. Verlag Paul Parey, Berlin

    Google Scholar 

  • Pérez JM, Meneguz PG, Dematteis A, Rossi L, Serrano E (2006) Parasites and conservation biology: the ‘ibex-ecosystem’. Biodivers Conserv 15:2033–2047

    Article  Google Scholar 

  • Peroux R (1995) La lièvre d´Europe. Bull Mens Off Natl Chasse 204:1–96

    Google Scholar 

  • Poiani A (1992) Ectoparasitism as a posssible cost of social life: a comparative analysis using Australian passerines (Passeriformes). Oecologia 92:429–441

    Article  Google Scholar 

  • Poulin R (2004) Macroecological patterns of species richness in parasite assemblages. Basic Appl Ecol 5:423–434

    Article  Google Scholar 

  • Poulin R (2007) Are there general laws in parasite ecology? Parasitology 134(6):763–776

    Article  PubMed  CAS  Google Scholar 

  • Real R, Barbosa AM, Porras D, Kin MS, Marquez AL, Guerreo JC, Palomo J, Justo ER, Vargas JM (2003) Relative importance of environment, human activity and spatial situation in determining the distribution of terrestrial mammal diversity in Argentina. J Biogeogr 30:939–947

    Article  Google Scholar 

  • Rohani P, Earn JD, Grenfell BT (1999) Opposite patterns of synchrony in sympatric disease metapopultions. Science 286:968–971

    Article  PubMed  CAS  Google Scholar 

  • Sacks BN, Woodward DL, Colwell AE (2003) A long-term study of non-native-heartworm transmission among coyotes in a Mediterranean ecosystem. Oikos 102:478–490

    Article  Google Scholar 

  • Skryabin KI (1991) Key to parasitic nematodes. E.J Brill Publishing Company, Leiden (The Netherlands)

    Google Scholar 

  • Stroh G (1931) Zwei sichere Altersmerkmale beim Hasen. Berl TieraÉrztl Wochenschr 47:180–181

    Google Scholar 

  • Telfer S, Birtles R, Bennett M, Lambin X, Paterson S, Begon M (2008) Parasite interactions in natural populations: insights from longitudinal data. Parasitology 135(7):767–781

    Article  PubMed  CAS  Google Scholar 

  • Thieltges DW, Reise K (2007) Spatial heterogeneity in parasite infections at different spatial scales in an intertidal bivalve. Oecologia 150:569–581

    Article  PubMed  Google Scholar 

  • Thomas F, Guegan J, Michalakis Y, Renaud F (2000) Parasites and host life-history traits: implications for community ecology and species co-existence. Int J Parasitol 30:669–674

    Article  PubMed  CAS  Google Scholar 

  • Thomas F, Renaud F, Guégan JF (2004) Parasitism and ecosystems. Oxford University Press, New York

    Google Scholar 

  • Tinsley RC (2005) Parasitism and hostile environments. In: Thomas F, Renaud F, Guegan F (eds) Parasitism and ecosystems. Oxford University Press, Oxford, UK, pp 85–111

    Chapter  Google Scholar 

  • Tompkins DM, Dobson AP, Arneberg P, Begon ME, Cattadori IM, Greenman JV, Heesterbeek H, Hudson PJ, Newborn B, Pugliese A, Rizzoli AP, Rosa R, Rosso F, Wilson K (2001) Parasites and host population dynamics. In: Hudson PJ, Rizzoli A, Grenfell BT, Heesterbeek H, Dobson AP (eds) The ecology of wildlife diseases. Oxford University Press, New York, pp 45–62

    Google Scholar 

  • van Oort H, Otter KA (2005) Natal nutrition and the habitat distributions of male and female black-capped chickadees. Can J Zool 83:1495–1501

    Article  Google Scholar 

  • Vicente J, Fierro Y, Martínez M, Gortázar C (2004) Long-term epidemiology, effect on body condition and interspecific interactions of concomitant infection by nasopharyngeal bot fly larvae (Cephenemyia auribarbis and Pharyngomyia picta, Oestridae) in a population of Iberian red deer (Cervus elaphus hispanicus). Parasitology 129:349–361

    Article  PubMed  CAS  Google Scholar 

  • Vicente J, Höfle U, Fernández-de-Mera IG, Gortázar C (2007a) The importance of parasite life history and host density in predicting the impact of infections in red deer. Oecologia 152:655–664

    Article  Google Scholar 

  • Vicente J, Pérez-Rodríguez L, Gortázar C (2007b) Sex, age, spleen size, and kidney fat of red deer relative to infection intensities of the lungworm Elaphostrongylus cervi. Naturwissenschaften 94:581–587

    Article  CAS  Google Scholar 

  • Villanúa D, Acevedo P, Höfle U, Rodríguez O, Gortázar C (2006) Changes in parasite transmission stage excretion after pheasant release. J Helminthol 80:1–7

    Article  Google Scholar 

  • Wilson K, Grenfell BT (1997) Generalized linear modeling for parasitologists. Parasitol Today 13:33–38

    Article  PubMed  CAS  Google Scholar 

  • Wilson K, Björnstad ON, Dobson AP, Merler S, Poglayen G, Randolph SE, Read AF, Skorping A (2002) Heterogeneities in macroparasite infections:patterns and processes. In: Hudson PJ, Rizzoli A, Grenfell BT, Heesterbeek H, Dobson AP (eds) The ecology of wildlife diseases. Oxford University Press, New York, pp 6–44

    Google Scholar 

Download references

Acknowledgements

Our gratitude to T. Czeschlik and four anonymous reviewers for their useful comments and suggestions on a previous version of our manuscript. This study was supported by the Cantabria Government. We thank Jesús Pérez (Cetyma), Julián Martín (Sociedad de Fomento de Caza y Pesca), and José Cobo for assistance in the sample collection, and Federación Cántabra de Caza for the support during sampling. V. Alzaga received a grant from Cantabria Government; P. Tizzani enjoyed a grant from Leonardo programme during IREC period; P. Acevedo is currently enjoying a Juan de la Cierva research contract awarded by the Ministerio de Ciencia e Innovación (MICINN) and is also supported by the project CGL2006-09567/BO; and F. Ruiz-Fons is supported by the “Instituto de Salud Carlos III” from the Ministerio de Sanidad y Consumo. The authors declare that samples were obtained from a legal hunting method. This study complies with the Spanish and Cantabrian laws. This hunting method obeys the Berne Convention agreements about wildlife capture methods (Annexe VI). We were not responsible for killing the hares and did not pay for the specimens.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vanesa Alzaga.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alzaga, V., Tizzani, P., Acevedo, P. et al. Deviance partitioning of host factors affecting parasitization in the European brown hare (Lepus europaeus). Naturwissenschaften 96, 1157–1168 (2009). https://doi.org/10.1007/s00114-009-0577-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00114-009-0577-y

Keywords

Navigation