Skip to main content
Log in

Ordering phenomena in quasi-one-dimensional organic conductors

  • Review
  • Published:
Naturwissenschaften Aims and scope Submit manuscript

Abstract

Low-dimensional organic conductors could establish themselves as model systems for the investigation of the physics in reduced dimensions. In the metallic state of a one-dimensional solid, Fermi liquid theory breaks down and spin and charge degrees of freedom become separated. But the metallic phase is not stable in one dimension: as the temperature is reduced, the electronic charge and spin tend to arrange themselves in an ordered fashion due to strong correlations. The competition of the different interactions is responsible for which broken-symmetry ground state is eventually realized in a specific compound and which drives the system toward an insulating state. Here, we review the various ordering phenomena and how they can be identified by optic and magnetic measurements. While the final results might look very similar in the case of a charge density wave and a charge-ordered metal, for instance, the physical cause is completely different. When density waves form, a gap opens in the density of states at the Fermi energy due to nesting of the one-dimension Fermi surface sheets. When a one-dimensional metal becomes a charge-ordered Mott insulator, on the other hand, the short-range Coulomb repulsion localizes the charge on the lattice sites and even causes certain charge patterns. We try to point out the similarities and conceptional differences of these phenomena and give an example for each of them. Particular emphasis will be put on collective phenomena that are inherently present as soon as ordering breaks the symmetry of the system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  • Basista H, Bonn DA, Timusk T, Voit J, Jérome D, Bechgaard K (1990) Far-infrared optical properties of tet rathiofulvalene–tetracyanoquinodimethane (TTF-TCNQ). Phys Rev B 42:4008–4099

    Article  Google Scholar 

  • Batail P (ed) (2004) Molecular conductors. Thematic Issue of Chemical Reviews. Chem Rev 104:4887–5781

    Google Scholar 

  • Bourbonnais C, Dumoulin B (1996) Theory of lattice and electronic fluctuations in weakly localized spin–Peierls systems. J Phys I (France) 6:1727–1744

    Article  CAS  Google Scholar 

  • Bulaevskii LN (1969) Magnetic susceptibility of a chain of spins with antiferromagnetic interaction. Sov Phys Solid State 11:921–924

    Google Scholar 

  • Chow DS, Zamborszky F, Alavi B, Tantillo DJ, Baur A, Merlic CA, Brown SE (2000) Charge ordering in the TMTTF family of molecular conductors. Phys Rev Lett 85:1698–1701

    Article  CAS  PubMed  Google Scholar 

  • Cohen MJ, Coleman LB, Garito AF, Heeger AJ (1974) Electrical conductivity of tetrathiofulvalinium tetracyanoquinodimethane (TTF)(TCNQ). Phys Rev B 10:1298–1307

    Article  CAS  Google Scholar 

  • Coleman LB, Cohen MJ, Sandman DJ, Yamagishi FG, Garito AF, Heeger AJ (1973) Superconducting fluctuations and the Peierls instability in an organic solid. Solid State Commun 12:1125–1132

    Article  CAS  Google Scholar 

  • Davies JH (1998) The physics of low-dimensional semiconductors. Cambridge University Press, Cambridge

    Google Scholar 

  • Degiorgi L, Dressel M, Schwartz A, Alavi B, Grüner G (1996) Direct observation of the spin-density-wave gap in (TMTSF)2PF6. Phys Rev Lett 76:3838–3841

    Article  CAS  PubMed  Google Scholar 

  • Denoyer F, Comès F, Garito AF, Heeger AJ (1975) X-ray-diffuse-scattering evidence for a phase transition in tetrathiafulvalene tetracyanoquinodimethane (TTF-TCNQ). Phys Rev Lett 35:445–449

    Article  CAS  Google Scholar 

  • Donovan S, Kim Y, Degiorgi L, Dressel M, Grüner G, Wonneberger W (1994) The electrodynamics of the spin density wave ground state: optical experiments on (TMTSF)2PF6. Phys Rev B 49:3363–3377

    Article  CAS  Google Scholar 

  • Dressel M (2003) Spin-charge separation in quasi-one-dimensional organic conductors. Naturwissenschaften 90:337–344

    Article  PubMed  CAS  Google Scholar 

  • Dressel M, Grüner G (2002) Electrodynamics of solids. Cambridge University Press, Cambridge

    Google Scholar 

  • Dressel M, Kirchner S, Hesse P, Untereiner G, Dumm M, Hemberger J, Loidl A, Montgomery L (2001) Spin and charge dynamics in Bechgaard salts. Synth Met 120:719–720

    Article  CAS  Google Scholar 

  • Dumm M, Abaker M, Dressel M (2005) Mid-infrared response of charge-ordered quasi-1D organic conductors (TMTTF)2 X. J Phys IV (France) 131:55–58

    Article  CAS  Google Scholar 

  • Dumm M, Loidl A, Alavi B, Starkey KP, Montgomery L, Dressel M (2000b) Comprehensive ESR-study of the antiferromagnetic ground states in the one-dimensional spin systems (TMTSF)2PF6, (TMTSF)2AsF6, and (TMTTF)2Br. Phys Rev B 62:6512–6520

    Article  CAS  Google Scholar 

  • Dumm M, Loidl A, Fravel BW, Starkey KP, Montgomery L, Dressel M (2000a) Electron-spin-resonance studies on the organic linear chain compounds (TMTCF)2 X (C=S, Se and X=PF6, AsF6, ClO4, Br). Phys Rev B 61:511–520

    Article  CAS  Google Scholar 

  • Dumoulin B, Bourbonnais C, Ravy S, Pouget JP, Coulon C (1996) Fluctuation effects in low-dimensional spin–Peierls systems: theory and experiment. Phys Rev Lett 76:1360–1363

    Article  CAS  PubMed  Google Scholar 

  • Farges JP (ed) (1994) Organic conductors. Marcel Dekker, New York

    Google Scholar 

  • Giamarchi T (2004) Quantum physics in one dimension. Oxford University Press, Oxford

    Google Scholar 

  • Goldstone J (1961) Field theories with ‘superconductor’ solution. Nuovo Cimento 19:154–164

    Google Scholar 

  • Grüner G (1994) Density waves in solids. Addison-Wesley, Reading, MA

    Google Scholar 

  • Heeger AJ, Garito AF (1975) The electronic properties of TTF-TCNQ. In: Keller HJ (ed) Low dimensional cooperative phenomena. Plenum, New York, pp 89–123

    Google Scholar 

  • Himpsel FJ, Kirakosian A, Crain JN, Lin JL, Petrovykh DY (2001) Self-assembly of one-dimensional nanostructures at silicon surfaces. Solid State Commun 117:149–157

    Article  CAS  Google Scholar 

  • Horiuchi S, Okimoto Y, Kumai R, Tokura Y (2000) Anomalous valence fluctuation near a ferroelectric transition in an organic charge-transfer complex. J Phys Soc Jpn 69:1302–1305

    Article  CAS  Google Scholar 

  • Horiuchi S, Okimoto Y, Kumai R, Tokura Y (2003) Quantum phase transition in organic charge-transfer complexes. Science 299:229–232

    Article  PubMed  CAS  Google Scholar 

  • Ishiguro T, Yamaji K, Saito G (1998) Organic superconductors, 2nd edn. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Jérome D (1991) The physics of organic conductors. Science 252:1509–1514

    Article  PubMed  Google Scholar 

  • Jérome D, Mazaud A, Ribault M, Bechgaard K (1980) Superconductivity in a synthetic organic conductor (TMTSF)2PF6. J Physique Lett 41:L95–L97

    Google Scholar 

  • Jérome D, Schulz HJ (1982) Organic conductors and superconductors. Adv Phys 31:299–490

    Article  Google Scholar 

  • Kagoshima S, Nagasawa H, Sambongi T (1988) One-dimensional conductors. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Koshihara SY, Takahashi Y, Saki H, Tokura Y, Luty T (1999) Photoinduced cooperative charge transfer in low-dimensional organic crystals. J Phys Chem B 103:2592–2600

    Article  CAS  Google Scholar 

  • Le LP et al. (1993) Muon-spin-rotation and relaxation studies in (TMTSF)2 X compounds. Phys Rev B 48:7284–7296

    Article  CAS  Google Scholar 

  • Lieb EH, Mattis DC (eds) (1966) Mathematical physics in one dimension. Academic, New York

    Google Scholar 

  • Maekawa S, Tohyama T, Barnes SE, Ishihara S, Koshibae W, Khaliullin G (2004) The physics of transition metal oxides. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Masino M, Girlando A, Brillante A, Della Valle RG, Venuti E, Drichko N, Dressel M (2006) Lattice dynamics of TTF-CA across the neutral ionic transition. Chem Phys 325:71–77

    Article  CAS  Google Scholar 

  • Mazumdar S, Clay RT, Cambell DK (2000) Bond-order and charge-density waves in the isotropic interacting two-dimensional quarter-filled band and the insulating state proximate to organic superconductivity. Phys Rev B 62:13400–13425

    Article  CAS  Google Scholar 

  • Monceau P (ed) (1985) Electronic properties of inorganic quasi-one-dimensional compounds, Part I/II. Reidel, Dordrecht

    Google Scholar 

  • Monceau P, Nad FY, Brazovskii S (2001) Ferroelectric Mot– Hubbard phase of organic (TMTTF)2 X conductors. Phys Rev Lett 86:4080–4083

    Article  PubMed  CAS  Google Scholar 

  • Moritz H, Stöferle T, Köhl M, Esslinger T (2003) Exciting collective oscillations in a trapped 1D gas. Phys Rev Lett 91:250402-1-9

    Google Scholar 

  • Nad F, Monceau P, Fabre J (1999) High dielectric permittivity in quasi-one-dimensional organic compounds (TMTTF)2X: possible evidence for charge induced correlated state. J Phys IV (Paris) 9:Pr10-361–Pr10-364

    Google Scholar 

  • O’Connell M (2006) Carbon nanotubes. Taylor & Francis, Boca Raton

    Google Scholar 

  • Overhauser AW (1962) Spin density waves in an electron gas. Phys Rev 128:1437–1452

    Article  Google Scholar 

  • Parkin SSP, Scott JC, Torrance JB, Engler EM (1982) Antiferromagnetic resonance in tetramethyltetrathiafulvalene bromide [(TMTTF)2Br]. Phys Rev B 26:6319–6321

    Article  CAS  Google Scholar 

  • Petukhov K, Dressel M (2005) Collective spin-density-wave response perpendicular to the chains of the quasi-one-dimensional conductor (TMTSF)2PF6. Phys Rev B 71:073101-1-3

    Google Scholar 

  • Seo H, Fukuyama H (1997) Antiferromagnetic phases of one-dimensional quarter-filled organic conductors. J Phys Soc Jpn 66:1249–1252

    Article  CAS  Google Scholar 

  • Takahashi T, Maniwa Y, Kawamura H, Saito G (1986) Determination of SDW characteristics in (TMTSF)2PF6 by 1H-NMR analysis. J Phys Soc Jpn 55:1364–1373

    Article  CAS  Google Scholar 

  • Torrance JB, Pedersen HJ, Bechgaard K (1982) Observation of antiferromagnetic resonance in an organic superconductor. Phys Rev Lett 49:881–884

    Article  CAS  Google Scholar 

  • Torrance JB, Vazquez JE, Mayerle JJ, Lee VY (1981) Discovery of a neutral-to-ionic phase transition in organic materials. Phys Rev Lett 46:253–257

    Article  CAS  Google Scholar 

  • Vuletić T, Korin-Hamzić B, Ivek T, Tomić S, Gorshunov B, Dressel M, Akimitsu J (2006) The spin-ladder and spin-chain system (La,Y,Sr,Ca)14Cu24O41: electronic phases, charge and spin dynamics. Phys Rep 428:169–258

    Article  CAS  Google Scholar 

  • Yu W, Zhang F, Zamborszky F, Alavi B, Baur A, Merlic CA, Brown SE (2004) Electron–lattice coupling and broken symmetries of the molecular salt (TMTTF)2SbF6. Phys Rev B 70:121101-1-4

    Google Scholar 

  • Zeller HR (1973) Electronic properties of one-dimensional solid state systems. In: Queisser HJ (ed) Festkörperprobleme (Advances in Solid State Physics), vol. 13. Pergamon, New York, p 31

    Google Scholar 

  • Zeller HR (1975) Electrical transport and spectroscopical studies of the Peierls transition in K2[Pt(CN)4]Br0.30·3H2O. In: Keller HJ (ed) Low dimensional cooperative phenomena. Plenum, New York, pp 215–233

    Google Scholar 

Download references

Acknowledgements

During the last years, we enjoyed collaborations and discussions with S. Brown, L. Degiorgi, N. Drichko, M. Dumm, A. Girlando, G. Grüner, and S. Tomić. We thank N. Drichko, M. Dumm, and S. Yasin for providing unpublished data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Dressel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dressel, M. Ordering phenomena in quasi-one-dimensional organic conductors. Naturwissenschaften 94, 527–541 (2007). https://doi.org/10.1007/s00114-007-0227-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00114-007-0227-1

Keywords

Navigation