Skip to main content
Log in

Getting ready for the manned mission to Mars: the astronauts’ risk from space radiation

  • Review
  • Published:
Naturwissenschaften Aims and scope Submit manuscript

Abstract

Space programmes are shifting towards planetary exploration and, in particular, towards missions by human beings to the Moon and to Mars. Radiation is considered to be one of the major hazards for personnel in space and has emerged as the most critical issue to be resolved for long-term missions both orbital and interplanetary. The two cosmic sources of radiation that could impact a mission outside the Earth’s magnetic field are solar particle events (SPE) and galactic cosmic rays (GCR). Exposure to the types of ionizing radiation encountered during space travel may cause a number of health-related problems, but the primary concern is related to the increased risk of cancer induction in astronauts. Predictions of cancer risk and acceptable radiation exposure in space are extrapolated from minimal data and are subject to many uncertainties. The paper describes present-day estimates of equivalent doses from GCR and solar cosmic radiation behind various shields and radiation risks for astronauts on a mission to Mars.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Badhwar GD (1997) Deep space radiation sources, models, and environmental uncertainty. In: Wilson JW, Miller J, Konradi A, Cucinotta FA (eds) Shielding strategies for human space exploration. NASA Conference Publication 3360, NASA Langley Research Center, Hampton, VA, USA, pp 17–28

  • Badhwar GD, O’Neill PM (1994) Long-term modulation of galactic cosmic radiation and its model for space exploration. Adv Space Res 14:749–757

    Article  PubMed  CAS  Google Scholar 

  • Badhwar GD, O’Neill PM (1996) Galactic cosmic radiation model and its applications. Adv Space Res 17:7–17

    Article  PubMed  CAS  Google Scholar 

  • Badhwar GD, Nachtwey DS, Yang TC (1992) Radiation issues for piloted Mars mission. Adv Space Res 12:195–200

    Article  PubMed  CAS  Google Scholar 

  • Baranov DG, Dergachev VA, Gagarin YF, Lyagushin VI, Nymmik RA, Panasyuk MI, Solov’ev AV, Yakubovskii EA (2002) The high-energy heavy-particle fluences in the orbits of manned space stations. Radiat Meas 35:423–431

    Article  PubMed  CAS  Google Scholar 

  • Baumstark-Khan C (1993) X-ray-induced DNA double-strand breaks as lethal lesions in diploid human fibroblasts compared to Chinese hamster ovary cells. Int J Radiat Biol 63:305–311

    PubMed  CAS  Google Scholar 

  • Baumstark-Khan C, Hellweg CE, Arenz A, Meier MM (2005) Cellular monitoring of the nuclear factor κB pathway for assessment of space environmental radiation. Radiat Res 164:527–530

    Article  PubMed  CAS  Google Scholar 

  • Bazilevskaya GA, Krainev MB, Stozhkov YI, Svirzhevskaya AK, Svirzhevsky NS (1994) Stratospheric measurements of cosmic rays in the 19th–22nd solar activity cycles. Adv Space Res 14:779–782

    Article  PubMed  CAS  Google Scholar 

  • Brooks AL (2003) Developing a scientific basis for radiation risk estimates: major goal of the DOE low dose radiation research program. Intern Cong Ser 1258:287–295

    Article  Google Scholar 

  • Brucer M (1964) Definition of the radiation complex. C: the acute radiation syndrome. Conn Med 28:192–202

    PubMed  CAS  Google Scholar 

  • Casolino M, Bidoli V, Morselli A, Narici L, De Pascale MP, Picozza P, Reali E, Sparvoli R, Mazzenga G, Ricci M, Spillantini P, Boezio M, Bonvicini V, Vacchi A, Zampa N, Castellini G, Sannita WG, Carlson P, Galper A, Korotkov M, Popov A, Vavilov N, Avdeev S, Fuglesang C (2003) Dual origins of light flashes seen in space. Nature 422:680

    Article  PubMed  CAS  Google Scholar 

  • Chaillet MP, Cosset JM, Socie G, Pico JL, Grimaud E, Dubray B, Alapetite C, Girinsky T (1993) Prospective study of the clinical symptoms of therapeutic whole body irradiation. Health Phys 64:370–374

    Article  PubMed  CAS  Google Scholar 

  • Chaudhry MA, Chodosh LA, McKenna WG, Muschel RJ (2003) Gene expression profile of human cells irradiated in G1 and G2 phases of cell cycle. Cancer Lett 195:221–233

    PubMed  CAS  Google Scholar 

  • Collis SJ, DeWeese TL, Jeggo PA, Parker AR (2005) The life and death of DNA-PK. Oncogene 24:949–961

    Article  PubMed  CAS  Google Scholar 

  • Cronkite EP (1964) The diagnosis, treatment, and prognosis of human radiation injury from whole-body exposure. Ann NY Acad Sci 31:114–341

    Google Scholar 

  • Cucinotta F, Wilson JW, Williams JR, Dicello JF (2000) Analysis of Mir-18 results for physical and biological dosimetry: radiation shielding effectiveness in LEO. Radiat Meas 32:181–191

    Article  PubMed  CAS  Google Scholar 

  • Curtis SB, Atwell W, Beever R, Hardy A (1986) Radiation environments and absorbed dose estimations on manned space missions. Adv Space Res 6:269–274

    Article  PubMed  CAS  Google Scholar 

  • DeGroot RP, Rijken PJ, DenHertog J, Boonstra J, Verkleij AJ, DeLaat SW, Kruijer W (1991) Nuclear responses to protein kinase C signal transduction are sensitive to gravity changes. Exp Cell Res 197:87–90

    Article  CAS  Google Scholar 

  • Durante M, Snigiryova G, Akaeva E, Bogomazova A, Druzhinin S, Fedorenko B, Greco O, Novitskaya N, Rubanovich A, Shevchenko V, Von Recklinghausen U, Obe G (2006) Chromosome aberration dosimetry in cosmonauts after single or multiple space flights. Cytogenet Genome Res 103:40–46

    Article  Google Scholar 

  • Folkard M, Prise KM, Vojnovic B, Gilchrist S, Schettino G, Belyakov OV, Ozols A, Michael BD (2003) The impact of microbeams in radiation biology. Nucl Instrum Methods B 181:426–430

    Article  Google Scholar 

  • Friedberg EC (1996) Relationships between DNA repair and transcription. Ann Rev Biochem 65:15–42

    Article  PubMed  CAS  Google Scholar 

  • Friedberg EC, Aguilera A, Gellert M, Hanawalt PC, Hays JB, Lehmann AR, Lindahl T, Lowndes N, Sarasin A, Wood RD (2006) DNA repair: from molecular mechanism to human disease. DNA Repair 5:986–996

    Article  PubMed  CAS  Google Scholar 

  • Fry RJM (1994) Radiation protection guidelines for space activities. Acta Astronaut 32:735–737

    Article  PubMed  CAS  Google Scholar 

  • George K, Durante M, Wu H, Willingham V, Cucinotta FA (2003) In vivo and in vitro measurements of complex-type chromosomal exchanges induced by heavy ions. Adv Space Res 36:1525–1535

    Article  CAS  Google Scholar 

  • George K, Willingham V, Cucinotta FA (2005) Stability of chromosome aberrations in the blood lymphocytes of astronauts measured after space flight by FISH chromosome painting. Radiat Res 164:474–480

    Article  PubMed  CAS  Google Scholar 

  • Goodhead DT (1994) Initial events in the cellular effects of ionizing radiations: clustered damage in DNA. Radiat Res 65:7–17

    CAS  Google Scholar 

  • Hada M, Sutherland BM (2006) Spectrum of complex DNA damages depends on the incident radiation. Radiat Res 165:223–230

    Article  PubMed  CAS  Google Scholar 

  • Hanawalt PC (1994) Transcription-coupled repair and human disease. Science 266:1957–1958

    Article  PubMed  CAS  Google Scholar 

  • Heynderickx D (2002) Radiation belt modelling in the framework of space weather effects and forecasting. J Atmos Solar-Terr Phys 64:1687–1700

    Article  Google Scholar 

  • Horneck G (1998) Biological monitoring of radiation exposure. Adv Space Res 22:1631–1641

    Article  PubMed  CAS  Google Scholar 

  • Horneck G, Facius R, Reichert M, Rettberg P, Seboldt W, Manzey D, Comet B, Maillet A, Preiss H, Schauer L, Dussap CG, Poughon L, Belyavin A, Heer M, Reitz G, Baumstark-Khan C, Gerzer R (2003) HUMEX, a study on the survivability and adaptation of humans to long-duration exploratory missions. ESA-SP1264, ESA Publication Division

  • Huntress W, Stetson D, Farquhar R, Zimmerman J, Clark B, O’Neil W, Bourke R, Foing B (2006) The next steps in exploring deep space—a cosmic study by the IAA. Acta Astron 58:304–377

    Article  Google Scholar 

  • IARC Study Group on Cancer Risk Among Nuclear Industry Workers (1994) Direct estimates of cancer mortality due to low doses of ionising radiation: an international study. Lancet 344:1039–1043

    Google Scholar 

  • Karagiannis TC, El-Osta A (2004) Double-strand breaks: signaling pathways and repair mechanisms. Cell Mol Life Sci 61:2137–2147

    Article  PubMed  CAS  Google Scholar 

  • Katz R, Ackerson B, Homayoonfar M, Sharma SC (1971) Inactivation of cells by heavy ion bombardment. Radiat Res 47:402–425

    Article  PubMed  CAS  Google Scholar 

  • Kiefer J, Pross HD (1999) Space radiation effects and microgravity. Mutat Res 430:299–305

    PubMed  CAS  Google Scholar 

  • Kraft G (1987) Radiobiological effects of very heavy ions: inactivation, induction of chromosome aberrations and strand breaks. Nucl Sci Appl 3:1–28

    CAS  Google Scholar 

  • Lambert B, Holmberg K, Hackman P, Wennborg A (1998) Radiation induced chromosomal instability in human T-lymphocytes. Mutat Res 405:161–170

    PubMed  CAS  Google Scholar 

  • Lett JT, Lee AC, Cox AB (1994) Risks of radiation cataracts from interplanetary space missions. Acta Astronaut 32:739–748

    Article  PubMed  CAS  Google Scholar 

  • National Council on Radiation Protection and Measurements (1989) Guidance on radiation received in space activities. NCRP, report no. 98

  • Obe G, Johannes I, Johannes C, Hallman K, Reitz G, Facius R (1997) Chromosomal aberrations in blood lymphocytes of astronauts after long-term space flights. Int J Radiat Biol 72:727–734

    Article  PubMed  CAS  Google Scholar 

  • Park WY, Hwang CI, Im CN, Kang MJ, Woo JH, Kim JH, Kim YS, Kim JH, Kim H, Kim KA, Yu HJ, Lee SJ, Lee YS, Seo JS (2002) Identification of radiation-specific responses from gene expression profile. Oncogene 21:8521–8528

    Article  PubMed  CAS  Google Scholar 

  • Pellis NR, Goodwin TJ, Risin D, McIntyre BW, Pizzini RP, Cooper D, Baker TL, Spaulding GF (1997) Changes in gravity inhibit lymphocyte locomotion through type I collagen. In Vitro Cell Dev Biol Anim 33:393–405

    Article  Google Scholar 

  • Pierce DA, Shimizu Y, Preston DL, Vaeth M, Mabuchi K (1996) Studies of the mortality of atomic bomb survivors. Report 12, part I. Cancer: 1950–1990. Radiat Res 146:l–27

    Google Scholar 

  • Pippia P, Sciola L, Cogoli-Greuter M, Meloni MA, Spano A, Cogoli A (1996) Activation signals of T-lymphocytes in microgravity. J Biotechnol 47:215–222

    Article  PubMed  CAS  Google Scholar 

  • Pissarenko NF (1994) Radiation environment due to galactic and solar cosmic rays during manned mission to Mars in the periods between maximum and minimum solar activity cycles. Adv Space Res 14:771–778

    Article  PubMed  CAS  Google Scholar 

  • Rashi-Elkeles S, Elkon R, Weizman N, Linhart C, Amariglio N, Sternberg G, Rechavi G, Barzilai A, Shamir R, Shiloh Y (2006) Parallel induction of ATM-dependent pro- and antiapoptotic signals in response to ionizing radiation in murine lymphoid tissue. Oncogene 25:1584–1952

    Article  PubMed  CAS  Google Scholar 

  • Rastegar N, Eckart P, Mertz M (2002) Radiation-induced cataract in astronauts and cosmonauts. Graefe Arch Clin Exp Ophthalmol 240:543–547

    Google Scholar 

  • Reddy MC, Vasquez KM (2005) Repair of genome destabilizing lesions. Radiat Res 164:345–356

    Article  PubMed  CAS  Google Scholar 

  • Reeves GI, Ainsworth EJ (1995) Description of the chronic radiation syndrome in humans irradiated in the former Soviet Union. Radiat Res 142:242–243

    Article  PubMed  CAS  Google Scholar 

  • Ron E (1998) Ionizing radiation and cancer risk: evidence from epidemiology. Radiat Res 150:S30–S41

    Article  PubMed  CAS  Google Scholar 

  • Schmitt DA, Hatton JP, Emond C, Chaput D, Paris H, Levade T, Cazenave JP, Schaffar L (1996) The distribution of protein kinase C is altered in microgravity. FASEB J 10:1627–1634

    PubMed  CAS  Google Scholar 

  • Shea MA, Smart DF (1994) Significant proton events of solar cycle 22 and a comparison with events of previous solar cycles. Adv Space Res 14:631–638

    Article  PubMed  CAS  Google Scholar 

  • Shea MA, Smart DF (1998) Space weather: the effects on operations in space. Adv Space Res 22:29–38

    Article  Google Scholar 

  • Simonsen LC, Wilson JW, Kim MH, Cucinotta FA (2000) Radiation exposure for human Mars exploration. Health Phys 79:515–525

    Article  PubMed  CAS  Google Scholar 

  • Smart DF, Shea MA (2002) A review of solar proton events during the 22nd solar cycle. Adv Space Res 30:1033–1044

    Article  PubMed  CAS  Google Scholar 

  • Smart DF, Shea MA (2003) The local time dependence of the anisotropic solar cosmic ray flux. Adv Space Res 32:109–114

    Article  PubMed  CAS  Google Scholar 

  • Smiraldo PG, Gruver AM, Osborn JC, Pittman DL (2005) Extensive chromosomal instability in Rad51d-deficient Mouse Cells. Cancer Res 65:2089–2096

    Article  PubMed  CAS  Google Scholar 

  • Snyder AR, Morgan WF (2004) Gene expression profiling after irradiation: Clues to understanding acute and persistent responses? Cancer Metastasis Rev 23:259–268

    Article  PubMed  CAS  Google Scholar 

  • Sonnenfeld G (1999) Space flight, microgravity, stress, and immune responses. Adv Space Res 23:1945–1953

    Article  PubMed  CAS  Google Scholar 

  • Spjeldvik WN, Bourdarie S, Boscher D (2002) Towards multi-dimensional space weather modeling for energetic oxygen ions in the Earth’s inner magnetosphere: equilibrium configuration. Adv Space Res 30:2839–2842

    Article  CAS  Google Scholar 

  • Sundaresan A, Risin D, Pellis NR (2004) Modeled microgravity-induced protein kinase C isoform expression in human lymphocytes. J Appl Physiol 96:2028–2033

    Article  PubMed  CAS  Google Scholar 

  • Testard I, Sabatier L (1999) Biological dosimetry for astronauts: a real challenge. Mutat Res 430:315–326

    PubMed  CAS  Google Scholar 

  • Todd P, Pecaut MJ, Fleshner M (1999) Combined effects of space flight factors and radiation on humans. Mutat Res 430:211–219

    PubMed  CAS  Google Scholar 

  • Townsend LW, Cucinotta FA, Wilson JW (1992) Interplanetary crew exposure estimates for galactic cosmic rays. Radiat Res 129:48–52

    Article  PubMed  CAS  Google Scholar 

  • Virtanen A (2006) The use of particle accelerators for space projects. J Physics Conf Ser 41:101–114

    Article  CAS  Google Scholar 

  • Weiss JF, Landauer MR (2003) Protection against ionizing radiation by antioxidant nutrients and phytochemicals. Toxicology 189:1–20

    Article  PubMed  CAS  Google Scholar 

  • Wilson JW, Townsend LW, Nealy JE, Chun SY, Hong BS, Buck WW, Lamkin SL, Ganapol BD, Khan F, Cucinotta FA (1989) BRYNTRN: a Baryon Transport model. NASA TP 2887. National Aeronautics and Space Administration Press

  • Wilson JW, Cucinotta FA, Shinn JL, Simonsen LC, Dubey RR, Jordan WR, Jones TD, Chang CK, Kim MY (1999) Shielding from solar particle event exposures in deep space. Radiat Meas 30:361–382

    Article  Google Scholar 

  • Wood RD (1996) Repair in eukaryotes. Ann Rev Biochem 65:135–167

    Article  PubMed  CAS  Google Scholar 

  • Wu B, Medvedovsky C, Worgul BV (1994) Non-subjective cataract analysis and its application in space radiation risk assessment. Adv Space Res 14:493–500

    Article  PubMed  CAS  Google Scholar 

  • Zaider M (2001) The risk of leukemia from low doses of low-LET radiation. Math Comp Model 33:1307–1313

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christa Baumstark-Khan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hellweg, C.E., Baumstark-Khan, C. Getting ready for the manned mission to Mars: the astronauts’ risk from space radiation. Naturwissenschaften 94, 517–526 (2007). https://doi.org/10.1007/s00114-006-0204-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00114-006-0204-0

Keywords

Navigation