Skip to main content
Log in

Wolfgang Priester: from the big bounce to the \(\Lambda\)-dominated universe

  • Review Article
  • Published:
Naturwissenschaften Aims and scope Submit manuscript

Abstract

Wolfgang Priester (1924–2005) was one of Germany’s most versatile and quixotic astrophysicists, reinventing himself successively as a radio astronomer, space physicist and cosmologist, and making a lasting impact on each field. We focus in this personal account on his contributions to cosmology, where he will be most remembered for his association with quasars, his promotion of the idea of a nonsingular “big bounce” at the beginning of the current expansionary phase, and his recognition of the importance of dark energy (Einstein’s cosmological constant Λ) well before this became the standard paradigm in cosmology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Blome H-J, Priester W (1984a) Urknall und Evolution des Kosmos I. Einstein-Friedmann-Kosmos und das Neutrino-Problem. Naturwissenschaften 71:456–467

    CAS  Google Scholar 

  • Blome H-J, Priester W (1984b) Urknall und Evolution des Kosmos II. Inflationär modifizierter Urknall und Eschatologie der Kosmos. Naturwissenschaften 71:515–527

    CAS  Google Scholar 

  • Blome H-J, Priester W (1984c) Vacuum energy in a Friedmann-Lemaître cosmos. Naturwissenschaften 71:528–531

    Google Scholar 

  • Blome H-J, Priester W (1985) Vacuum energy in cosmic dynamics. Astrophys Space Sci 117:327–335

    Google Scholar 

  • Blome H-J, Priester W (1991) Big Bounce in the very early universe. Astron Astrophys 250:43–49

    CAS  Google Scholar 

  • Blome H-J, Priester W, Hoell J (1995a) New ways in cosmology: I. Friedmann-Lemaître model derived from the Lyman alpha forest in quasar spectra. In: Shapiro MM, Silberberg R, Wefel JP (eds) Currents in high-energy astrophysics. Kluwer, Dordrecht, pp 291–300

    Google Scholar 

  • Blome H-J, Priester W, Hoell J (1995b) New ways in cosmology: II. Alternative models for the very early universe. In: Shapiro MM, Silberberg R, Wefel JP (eds) Currents in high-energy astrophysics. Kluwer, Dordrecht, pp 301–312

    Google Scholar 

  • Blome H-J, Hoell J, Priester W (1997) Kosmologie. In: Bergmann-Schaefer Lehrbuch der Experimentalphysik 8, 1st edn. Walter de Gruyter, Berlin, pp 311–427

    Google Scholar 

  • Blome H-J, Hoell J, Priester W (2002) Kosmologie. In: Bergmann-Schaefer Lehrbuch der Experimentalphysik 8, 2nd edn. Walter de Gruyter, Berlin, pp 439–582

    Google Scholar 

  • Blum P, Priester w, Schuchardt K, Wulf-Mathies C (1976) On the decay of satellite orbits. In: Space research XVI, Proceedings open meetings of working groups on physical sciences and symposium and workshop on results from coordinated upper atmosphere measurement programs. Akademie-Verlag, Berlin, pp 197–201

    Google Scholar 

  • Bojowald M (2005) The early universe in loop quantum gravity. J Phys Conf Ser 24:77–86

    Google Scholar 

  • Calder N (2003) Magic universe: the Oxford guide to modern science. Oxford University Press, Oxford, pp 73, 694

    Google Scholar 

  • Caldwell RR, Dave R, Steinhardt PJ (1998) Cosmological imprint of an energy component with general equation of state. Phys Rev Lett 80:1582–1585

    CAS  Google Scholar 

  • Carroll SM (2001) The cosmological constant. Living Rev Relativity 4:1–50

    Google Scholar 

  • Carroll SM, Press WH, Turner EL (1992) The cosmological constant. Annu Rev Astron Astrophys 30:499–542

    Google Scholar 

  • Chiu H-Y (1964) Gravitational collapse. Phys Today 17:21–34

    Article  Google Scholar 

  • Chu Y, Hoell J, Blome H-J, Priester W (1988a) On the observational discrimination of Friedmann-Lemaître models. In: Andouze J, Pelletan M-C, Szalay S (eds) Large scale structures of the universe. Proceedings of the IAU Symposium no. 130. Kluwer, Dordrecht, p 517

    Google Scholar 

  • Chu Y, Hoell J, Blome H-J, Priester W (1988b) The observational discrimination of Friedmann-Lemaître models. Astrophys Space Sci 148:119–130

    Google Scholar 

  • Dröge F, Priester W (1956) Durchmusterung der allgemeinen Radiofrequenz-Strahlung bei 200 MHz. Zeits. Astrophysics 40:236–248

    Google Scholar 

  • Eddington AS (1924) The mathematical theory of relativity. Cambridge University Press, Cambridge, UK, p 154

    Google Scholar 

  • Efstathiou G, Sutherland WJ, Maddox SJ (1990) The cosmological constant and cold dark matter. Nature 348:705–707

    Google Scholar 

  • Feldman HA, Evrard AE (1993) Structure in a loitering universe. Int J Mod Phys D 2:113–122

    Google Scholar 

  • Gasperini M, Veneziano G (2003) The pre-big-bang scenario in string cosmology. Phys Rep 373:1–212

    CAS  Google Scholar 

  • Glanz J (1998) Breakthrough of the year: astronomy—cosmic motion revealed. Science 282:2156–2157

    CAS  Google Scholar 

  • Gold T (1965) Summary of after-dinner speech. In: Quasi-stellar sources and gravitational collapse. University of Chicago Press, Chicago, p 470

    Google Scholar 

  • Grahl B-H, Priester W (1959) Eine Messung der Position der Radioquelle Sagittarius A. Zeits. Astrophysics 47:50–53

    Google Scholar 

  • Gratton S, Steinhardt P (2003) Cosmology—beyond the inflationary border. Nature 423:817–818

    PubMed  CAS  Google Scholar 

  • Grewing M, Priester W (1973) Nichtthermische Strahlungsquellen im Radiofrequenzbereich (Radiogalaxien, Quasare, Pulsare). Phys Didakt 3:212–225

    Google Scholar 

  • Grewing M, Pfleiderer J, Priester W (1968) Nichtthermische kosmische Strahlungsquellen. Forschungsbericht des Landes Nordrhein-Westfalen 176. Westdeutscher Verlag, Köln-Opladen, 48 pp

    Google Scholar 

  • Harris I, Priester W (1962a) Time-dependent structure of the upper atmosphere. J Atmos Sci 19:286–301

    Google Scholar 

  • Harris I, Priester W (1962b) Theoretical models for the solar-cycle variation of the upper atmosphere. J Geophys Res 67:4585–4591

    Google Scholar 

  • Harris I, Priester W (1962c) Time-dependent structure of the upper atmosphere. NASA Technical Note D-1443, 71 pp

  • Harris I, Priester W (1962d) Theoretical models for the solar-cycle variation of the upper atmosphere. NASA Technical Note D-1444, 261 pp

  • Harris I, Priester W (1963a) Heating of the upper atmosphere. In: Priester, W (ed) Space research III. Proceedings of the third international space science symposium. North Holland, Amsterdam, pp 53–75

    Google Scholar 

  • Harris I, Priester W (1963b) Relation between theoretical and observational models of the upper atmosphere. J Geophys Res 68:5891–5894

    Google Scholar 

  • Harris I, Priester W (1965a) On the diurnal variation of the upper atmosphere. In: King-Hele DG, Muller P, Righini G (eds) Space research V. Proceedings of the fifth international space science symposium. North Holland, Amsterdam, p 1214

    Google Scholar 

  • Harris I, Priester W (1965b) Of the diurnal variation of the upper atmosphere. J Atmos Sci 22:3–10

    Google Scholar 

  • Harris I, Priester W (1968) The structure of the thermosphere and its variations. In: Quiroz RS (ed) Meteorological investigations of the upper atmosphere. Meteorological Monographs, vol. 9, Proceedings of the American Meteorological Society symposium on meteorological investigations above 70 km. Published in Boston, MA by the American Meteorological Society in 1968, pp 72–81 see http://adsabs.harvard.edu/cgi-bin/nph-bib_query?bibcode=1968miua.conf...72H

  • Harris I, Priester W (1969) On the semiannual variation of the upper atmosphere. J Atmos Sci 26:233–240

    Google Scholar 

  • Haslam G, Wielebinski R, Priester W (1982) Radio maps of the sky. Sky Telesc 63:230–232

    Google Scholar 

  • Hoell J, Priester W (1988) Die Evolutionszeit der Quasare, Sterne und Weltraum. Sterne Weltraum 27:412–413

    Google Scholar 

  • Hoell J, Priester W (1990a) Voids, Walls und Schweizer Käse. Sterne Weltraum 29:74–75

    Google Scholar 

  • Hoell J, Priester W (1990b) Ist die fehlende Masse Illusion? Sterne Weltraum 29:638–641

    Google Scholar 

  • Hoell J, Priester W (1991a) Dark matter and the cosmological constant. Comments Astrophys 15:127–136

    Google Scholar 

  • Hoell J, Priester W (1991b) Void-structure in the early universe. Implications for a Λ > 0 cosmology. Astron Astrophys 251:L23–L26

    Google Scholar 

  • Hoell J, Priester W (1994a) The Lyman α forest and the universal bubble structure. In: Wamsteker W, Longair MS, Kondo Y (eds) Frontiers of space and ground-based astronomy: the astrophysics of the 21st century. Kluwer, Dordrecht, pp 651–652

    Google Scholar 

  • Hoell J, Priester W (1994b) Galaxy formation in a Friedmann-Lemaître model. In: Hensler G, Theis C, Gallagher J (eds) Panchromatic view of galaxies—their evolutionary puzzle. Éditions Frontières, Gif-sur-Yvette, pp 29–33

  • Hoell J, Priester W (1995) The Lyman α forest and the universal bubble structure. In: Behara M, Fritsch R, Lintz RG (eds) Symposia Gaussiana. Walter de Gruyter, Berlin, pp 617–625

    Google Scholar 

  • Hoell J, Liebscher L-E, Priester W (1994) Confirmation of the Friedmann-Lemaître universe by the distribution of the larger absorbing clouds. Astron Nachr 315:89–96

    Google Scholar 

  • Israelit M, Rosen N (1989) A singularity-free cosmological model in general relativity. Astrophys J 342:627–634

    Google Scholar 

  • Kardashev N (1967) Lemaître’s universe and observations. Astrophys J 150:L135–L139

    Google Scholar 

  • Kardashev N, Blome H-J, Priester WP (1989) Insular baryonic asymmetry in the universe. Comments Astrophys 13:87–101

    CAS  Google Scholar 

  • Kim TS et al (2002) The physical properties of the Lyα forest at \(z>1.5\) Mon Not R Astron Soc 335:555–573

    CAS  Google Scholar 

  • Kragh H (1996) Cosmology and Controversy. Princeton University Press, Princeton, NJ

    Google Scholar 

  • Krauss LM, Turner MS (1995) The cosmological constant is back. Gen Relativ Gravit 27:1137–1144

    Google Scholar 

  • Kundt W (1989) Brennpunkte astrophysikalischer Forschung. Naturwissenschaften 76:289–324

    Google Scholar 

  • Kundt W (2005) Nachruf auf Wolfgang Priester. Telescopium 130:51–55 (see http://www.volkssternwarte-bonn.de/info/Priester.html)

    Google Scholar 

  • Lewis RB, Srinivasan B, Anders E (1975) Host phase of a strange xenon component in Allende. Science 190:1251–1262

    CAS  Google Scholar 

  • Liebscher DE, Priester W (1995) Quasar absorption lines and the parameters of the Friedmann universe. In: Mücket J, Gottloeber S, Müller V (eds) Large scale structure in the universe. World Scientific, Singapore, p 273

    Google Scholar 

  • Liebscher D-E, Priester W, Hoell J (1992a) Lyman-alpha forests and the evolution of the universe. Astron Gesellschaft Abstract Ser 7:60

    Google Scholar 

  • Liebscher D-E, Priester W, Hoell J (1992b) A new method to test the model of the universe. Astron Astrophys 261:377–381

    CAS  Google Scholar 

  • Liebscher D-E, Priester W, Hoell J (1992c) Lyman-alpha forests and the evolution of the universe. Astron Nachr 313:265–273

    CAS  Google Scholar 

  • Martin HA, Priester W (1960) Measurement of solar and diurnal effects in the high atmosphere by artificial satellites. Nature 185:600–601

    Google Scholar 

  • Martin HA, Neveling W, Priester W, Roemer M (1961) Model of the upper atmosphere from 130 through 1600 km derived from satellite orbits. Mitteilungen der Sternwarte Bonn 35:16 pp; In: van de Hulst H, de Jager C, Moore AF (eds) Space research II. Proceedings of the second international space science symposium. North Holland, Amsterdam, pp 902–917

    Google Scholar 

  • Müller HG, Priester W, Fischer G (1957) Radioemission des Kometen 1956 h. Die Naturwissenschaften 44:392–393

    Google Scholar 

  • Newell HE, Kroshkin MG, Priester W (1969) Satelliten erkunden Erde und Mond. Umschau-Verlag, Frankfurt a.M., 136 pp

    Google Scholar 

  • Newton G, Horowitz R, Priester W (1964) Atmospheric densities from Explorer 17 density gages and a comparison with satellite drag data. J Geophys Res 69:4690–4692

    Google Scholar 

  • Newton GP, Horowitz R, Priester W (1965) Atmospheric density and temperature variations from the Explorer XVII satellite and a further comparison with satellite drag. Planet Space Sci 13:599–616

    Google Scholar 

  • Ostriker JP, Steinhardt PJ (1995) Cosmic concordance. Nature 377:600–602

    CAS  Google Scholar 

  • Overduin J, Priester W (2001) Problems of modern cosmology: how dominant is the vacuum?. Naturwissenschaften 88:229–248

    PubMed  CAS  Google Scholar 

  • Overduin J, Priester W (2004) An accelerating closed universe. In: Shapiro MM, Stanev T, Wefel JP (eds) Relativistic astrophysics and cosmology. Proceedings of the international school of cosmic aay astrophysics—13th course. World Scientific, Singapore, pp 3–21

    Google Scholar 

  • Overduin JM, Priester W (2006) Quasar absorption-line number density in a closed, Λ-dominated universe. Astrophys Space Sci 305:159–163

    Google Scholar 

  • Padmanabhan T (1993) Structure formation in the universe. Cambridge University Press, Cambridge, UK, p 342

    Google Scholar 

  • Papanastassiou DA, Wasserburg GF (1971) Lunar chronology and evolution from Rb–Sr Studies of Apollo 11 and 12 Samples. Earth Planet Sci Lett 11:37–62

    CAS  Google Scholar 

  • Peacock JA (1999) Cosmological physics. Cambridge University Press, Cambridge, UK, p 363

    Google Scholar 

  • Peebles PJE (1993) Principles of physical Cosmology. Princeton University Press, Princeton, NJ, pp 318–319, 364–367

    Google Scholar 

  • Peebles PJE, Ratra B (1988) Cosmology with a time-variable cosmological “constant”. Astrophys J 325:L17–L20

    Google Scholar 

  • Petrosian V (1982) Phase transitions and dynamics of the universe. Nature 298:805–808

    Google Scholar 

  • Petrosian V, Salpeter E, Szekeres P (1967) Quasi-stellar objects in universes with non-zero cosmological constant. Astrophys J 147:1222–1226

    Google Scholar 

  • Pfleiderer J, Priester W (1966) Neuere Ergebnisse der Erforschung der Quasare, Sterne und Weltraum. Sterne Weltraum 5:200–205

    Google Scholar 

  • Pfleiderer J, Priester W, Köhnlein W (1973) Processes of continuous radio emission. In: Bruzek A, Pilkuhn H (eds) Lectures on space physics 2—sun and interplanetary medium, relativistic astrophysics. Bertelsmann Universitätsverlag, Düsseldorf, pp 127–193

    Google Scholar 

  • Priester W (1953) Photometrie von Fraunhofer-Linien mit der Lummer-Platte, angewandt auf die Mitte-Rand-Variation der Natrium D-Linien. Zeits Astrophys 32:200–250

    CAS  Google Scholar 

  • Priester W (1954a) Zur Deutung der extragalaktischen Radiofrequenz-Strahlung. Zeits Astrophys 34:283–294

    Google Scholar 

  • Priester W (1954b) Über die Anzahl der Radio-Sterne in der Milchstraße. Zeits Astrophys 34:295–301

    Google Scholar 

  • Priester W (1955a) Gestörte Multipletts in Sternatmosphären. Zeits Astrophys 36:230–239

    CAS  Google Scholar 

  • Priester W (1955b) Über die Radioquelle Sagittarius A. Zeits Astrophys 38:73–80

    Google Scholar 

  • Priester W (1957) Photometrie von Fraunhofer-Linien mit der Lummer-Platte, angewandt auf die Mitte-Rand-Variation der Natrium D-Linien. Veröffentlichungen der Universitäts-Sternwarte zu Göttingen 6:85–136

    Google Scholar 

  • Priester W (1958a) Photometrie von Fraunhofer-Linien mit der Lummer-Platte, angewandt auf die Mitte-Rand-Variation der Natrium D-Linien. Veröffentlichungen der Universitäts-Sternwarte zu Göttingen 6:136.1–136.2

    Google Scholar 

  • Priester W (1958b) Zur Statistik der Radioquellen in der relativistischen Kosmologie. Zeits Astrophys 46:179–202

    Google Scholar 

  • Priester W (1959) Sonnenaktivität und Abbremsung der Erdsatelliten. Mitteilungen der Sternwarte Bonn 24:4 pp; Die Naturwissenschaften 46:197–198

    Google Scholar 

  • Priester W (1961a) Die galaktische Radiostrahlung. Mitteilungen der Astronomischen Gesellschaft 14:21 pp

    Google Scholar 

  • Priester W (1961b) Solar activity effect and diurnal variation in the upper atmosphere. J Geophys Res 66:4143–4148

    Article  Google Scholar 

  • Priester W, ed (1963a) Space research III. Proceedings of the third international space science symposium. North Holland, Amsterdam, 1275 pp

    Google Scholar 

  • Priester W (1963b) Discussion of atmospheric heat sources based on the analysis of satellite drag data. In: Roy M (ed) Dynamics of satellites. Springer, Berlin Heidelberg New York pp 143–157

    Google Scholar 

  • Priester W (1965) On the variations of the thermospheric structure. Proc R Soc Lond A 288:493–509

    Article  Google Scholar 

  • Priester W (1967) Density and temperature variations above 150 km. Bull Am Meteorol Soc 48:215

    Google Scholar 

  • Priester W (1970) Neue Art energiereicher Objekte im Weltraum. Erdol und Kohle Erdgas Petrochemie Vereinigt mit Brennstoff-Chemie 23:702

    Google Scholar 

  • Priester W (1977) Energiereiche Objekte im Kosmos. Stahl und Eisen 97:1263–1270

    Google Scholar 

  • Priester W (1978) Astronomie und Öffentlichkeit. Mitt Astron Ges 43:11–19

    Google Scholar 

  • Priester W (1979) Fortschritt aus dem Unerwarteten. Sterne und Weltraum 17:316–318; Mitt Astron Ges 45:9–15

    Google Scholar 

  • Priester W (1980) Quasare, Blasare, Schwerkraftstrudel. Phys Bl 36:241–245

    CAS  Google Scholar 

  • Priester W (1981) Die strahlungsstärksten Objekte am Rande des Universums: die Quasare. Universitas 1981. Wissenschaftliche Verlagsgesellschaft, Stuttgart, pp 293–304

    Google Scholar 

  • Priester W (1982) Neue Fortschritte in der Kosmologie. Universitas 1982. Wissenschaftliche Verlagsgesellschaft, Stuttgart, pp 827–832

    Google Scholar 

  • Priester W (1983a) Vom Urknall bis zu schwarzen Löchern. Tech Mitt 1:2–8 (Essen: Vulkan Verlag)

    Google Scholar 

  • Priester W (1983b) Wo blieb die Antimaterie? Nat Wiss Rundsch 36:11–15

    CAS  Google Scholar 

  • Priester W (1984) Urknall und Evolution des Kosmos—Fortschritte in der Kosmologie. Nordrhein-Westfälische Akademie der Wissenschaften 333. Westdeutscher Verlag, Opladen, 85 pp

    Google Scholar 

  • Priester W (1985a) Neutrinos and the fate of our Universe. Universitas 1985. Wissenschaftliche Verlagsgesellschaft, Stuttgart, pp 143–149

    Google Scholar 

  • Priester W (1985b) Josef Samuelowitsch Shklovsky. Sterne Weltraum 24:427

    Google Scholar 

  • Priester W (1986) Vom Ursprung des Universums. In: Maier-Leibnitz H (ed) Zeugen des Wissens. Hase & Köhler, Mainz, pp 127–156

    Google Scholar 

  • Priester W (1987) Relationship between redshift and recession velocities in an isotropic universe. Naturwissenschaften 74:601–602

    Google Scholar 

  • Priester W (1988a) Yakov Borisovich Zel’dovich. Sterne Weltraum 27:79

    Google Scholar 

  • Priester W (1988b) The universe of Yakov Zel’dovich. Sky Telesc 76:354

    Google Scholar 

  • Priester W (1994) Neue Erkenntnisse über Ursprung und Entwicklung des Kosmos. Technische Mitteilungen (Organ des Hauses der Technik eV Essen) 87:3–12

    CAS  Google Scholar 

  • Priester W (1995) Über den Ursprung des Universums: das Problem der Singularität. Nordrhein-Westfälische Akademie der Wissenschaften 414. Westdeutscher Verlag, Opladen, 36 pp

    Google Scholar 

  • Priester W, Blome H-J (1987a) Zum Problem des Urknalls—‘Big Bang’ oder ‘Big Bounce’?I. I Sterne Weltraum 26:83–89

    Google Scholar 

  • Priester W, Blome H-J (1987b) Zum Problem des Urknalls—‘Big Bang’ oder ‘Big Bounce’? II. Sterne Weltraum 26:140–144

    CAS  Google Scholar 

  • Priester W, Cattani D (1962) On the semiannual variation of geomagnetic activity and its relation to the solar corpuscular radiation. J Atmos Sci 19:121–126

    Google Scholar 

  • Priester W, Dröge F (1955) Über die Mitte-Rand-Variation der solaren Radiofrequenzstrahlung von 198 MHz während der Finsternis 1954 Juni 30. Zeits Astrophys 37:132–142

    Google Scholar 

  • Priester W, Hergenhahn G (1958) Bahnbestimmung von Erdsatelliten aus Dopplereffecktmessungen. Wissenschaftliche Abhandlungen der Arbeitsgemeinschaft für Forschung des Landes Nordrhein-Westfalen 8:38 pp

  • Priester W, Martin HA (1960a) Solare und tageszeitliche Effekte in der Hochatmospäre aus Beobachtungen künstlicher Erdsatelliten. Mitteilungen der Sternwarte Bonn 29:53 pp; Forschungsbericht des Landes Nordrhein-Westfalen 547:53 pp (Köln-Opladen: Westdeutscher Verlag, 1960); Royal Aircraft Establishment Farnborough Library Translation 901:20 pp

  • Priester W, Martin HA (1960b) Temperature inversion in the F1-layer. Nature 188:200–202

    Google Scholar 

  • Priester W, Rosenberg J (1965) Extragalactic radio sources. NASA Technical Note D-2888; In: Hess WN (ed) Introduction to Space Science, 1st edn. Gordon and Breach, New York, 823–862

    Google Scholar 

  • Priester W, Rosenberg J (1968) Extragalactic radio sources. In: Hess WN, Wilmot GD (eds) Introduction to space science, 2nd edn. Gordon and Breach, New York, pp 937–981

    Google Scholar 

  • Priester W, Schaaf R (1987) Carl Wirtz und die Flucht der Spiralnebel. Sterne Weltraum 26:376–377

    Google Scholar 

  • Priester W, van de Bruck C (1998) 75 Jahre Theorie des expandierenden Kosmos: Friedmann Modelle und der ‘Einstein-Limit’. Naturwissenschaften 85:524–538

    CAS  Google Scholar 

  • Priester W, Bennewitz H-G, Lengrüsser P (1958) Radiobeobachtungen des ersten künstlichen Erdsatelliten. Wissenschaftliche Abhandlungen der Arbeitsgemeinschaft für Forschung des Landes Nordrhein-Westfalen 1:46 pp

  • Priester W, Martin HA, Kramp K (1960) Diurnal and seasonal density variations in the upper atmosphere. Nature 188:202–204

    Google Scholar 

  • Priester W, Roemer M, Schmidt-Kaler T (1963) Apparent relation between solar activity and the 440 Mc/s radar distance of Venus. Mitteilungen der Sternwarte Bonn 1962:2 pp; Nature 196:464–465

    Google Scholar 

  • Priester W, Römer M, Volland H (1967) The physical behavior of the upper atmosphere deduced from satellite drag data. Space Sci Rev 6:707–780

    Google Scholar 

  • Priester W, Hoell J, Blome H-J (1989) Das Quantenvakuum und die kosmologische Konstante. Wie alt ist das Universum? Phys Bl 45:51–56

    CAS  Google Scholar 

  • Priester W, Hoell J, Blome H-J (1995) The scale of the universe: a unit of length. Comments Astrophys 17:327–342

    Google Scholar 

  • Priester W, Hoell J, van de Bruck C (1996a) Friedmann-Lemaître model derived from the Lyman alpha forest in quasar spectra. In: Trimble V, Reisenegger A (eds) Clusters, lensing and the future of the universe. Proceedings of the ASP Conference 88:286–289

  • Priester W, Hoell J, Liebscher D-E, van de Bruck C (1996b) Friedmann-Lemaître model derived from the Lyman alpha forest in quasar spectra. In: Gnedin YN, Grib AA, Mostepaneko VM (eds) Proceedings of the third Alexander Friedmann international seminar on gravitation and cosmology. Friedmann Laboratory, St. Petersburg, pp 52–67

  • Rauch M (1998) The Lyman alpha forest in the spectra of quasistellar objects. Annu Rev Astron Astrophys 36:267–316

    CAS  Google Scholar 

  • Sahni V, Feldman H, Stebbins A (1992) Loitering universe. Astrophys J 385:1–8

    Google Scholar 

  • Schmidt M (1970) Space distrbution and luminosity functions of quasars. Astrophys J 162:371–379 (editorial footnote by S. Chandrasekhar)

    Google Scholar 

  • Schuchardt KGH, Priester W, Blum PW, Peters HG (1985) Lower thermospheric density structure derived from late decay phases of satellite orbits. Adv Space Res 5:179–182

    Google Scholar 

  • Schuchardt KGH, Priester W, Blum PW, Peters HG (1986) Anomalous perigee shift and eccentricity variation due to air drag in the reentry phase. In: Re-entry of space debris. ESA Publications, Noordwijk, pp 55–59

    Google Scholar 

  • Shklovsky J (1967) On the nature of the “standard” absorption spectrum of the quasi-stellar objects. Astrophys J 150:L1–L3

    Google Scholar 

  • Stocke JT, Shull JM, Penton SV (2004) The baryon content of the local intergalactic medium. In: From planets to cosmology. Space Telescope Science Institute, Baltimore, MD

  • Streeruwitz E (1975) Vacuum fluctuations of a quantized scalar field in a Robertson-Walker universe. Phys Rev D 11:3378–3383

    Google Scholar 

  • Thomas J, Schulz H (2001) Incompatibility of a comoving Lyα forest with supernova-Ia luminosity distances. Astron Astrophys 37:1–10

    Google Scholar 

  • van de Bruck C, Priester W (1996) Quasar pairs testing the bubble wall model. In: Trimble V, Reisenegger A (eds) Clusters, lensing and the future of the universe. Proceedings of the ASP Conference 88:290–293

  • van de Bruck C, Priester W (1999) The cosmological constant Λ, the age of the universe and dark matter: clues from the Lyα-forest. In: Klapdor-Kleingrothaus HV, Baudis L (eds) Dark98. Proceedings of the second international workshop on dark matter. Institute of Physics Press, Bristol, pp 181–196

    Google Scholar 

  • van de Bruck C, Soika M, Priester W (1998) Aktuelle Modelle der Kosmologie. Astron Raumfahrt (Berl) 35:30–33

    Google Scholar 

  • Volland H, Wulf-Mathies C, Priester W (1972) On the annual and semiannual variations of the thermospheric density. J Atmos Terr Phys 34:1053–1063

    Google Scholar 

  • Wetterich C (1988) Cosmology and the fate of dilatation symmetry. Nucl Phys B 302:668–696

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James Overduin.

Additional information

In memoriam Wolfgang Priester, 22 April 1924 – 9 July 2005

Rights and permissions

Reprints and permissions

About this article

Cite this article

Overduin, J., Blome, HJ. & Hoell, J. Wolfgang Priester: from the big bounce to the \(\Lambda\)-dominated universe. Naturwissenschaften 94, 417–429 (2007). https://doi.org/10.1007/s00114-006-0187-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00114-006-0187-x

Keywords

Navigation