Skip to main content
Log in

Biomechanik distaler Radiusfrakturen

Grundlagenverständnis und GPS-Behandlungsstrategie bei winkelstabiler Plattenosteosynthese

Biomechanics of distal radius fractures

Basics principles and GPS treatment strategy for locking plate osteosynthesis

  • Leitthema
  • Published:
Der Unfallchirurg Aims and scope Submit manuscript

Zusammenfassung

Die distale Radiusfraktur ist meist Folge eines Hyperextensionstraumas. Einwirkende Zug- und Druckvektoren, Impulsstärke, Knochenstatus und Weichteilspannung schaffen ein individuell unterschiedliches Frakturbild. Metaphysäre Stauchungsdefekte, fehlende kortikale Abstützung, ligamentäre Abriss- und Scherfragmente definieren die Frakturinstabilität. Die Dislokation des Gelenkfragments folgt den Kraftvektoren der extrinsischen Muskelgruppen.

Zur Auswahl der individuell idealen Behandlungsform hat sich die Goal-Plan-Standardized (GPS) Behandlungsstrategie bewährt. Basis ist die Bedarfsanalyse der Handgelenkfunktion und eine Beurteilung der Frakturinstabilität im CT. Das Ziel ist eine realistische subjektive Erwartungshaltung eingeschätzt durch den Patienten und Behandler. Der Behandlungsplan umfasst die Risiko-Nutzen-Abwägung und Verfahrenswahl. Die Standards der Operationsverfahren und Nachbehandlung basieren auf biomechanischen Erkenntnissen. Der Therapieansatz zur maximal stabilen Plattenosteosynthese liegt in der Neutralisation der dislozierenden Kraftvektoren. Er soll eine frühfunktionelle Nachbehandlung ermöglichen. Eine unidirektionale Instabilität kann mithilfe der winkelstabilen palmaren Plattenosteosynthese auch indirekt ausreichend neutralisiert werden. Eine multidirektionale Instabilität wird nach dem Säulenprinzip mit der Mehrfachplattenosteosynthese neutralisiert. Distale Scher- und Abrissfrakturen können fragmentspezifisch minimal adressiert werden.

Abstract

Fractures of the distal radius are most commonly caused by hyperextension injuries of the wrist. Tensile forces and force vectors, strength of impact, bone strength and soft tissue tension create individually different fracture patterns. Metaphyseal comminution, loss of cortical support, ligament avulsion and shear fragments are defining parameters for fracture instability. The dislocation of the articular fragment follows the force vectors of the extrinsic forearm muscles bridging the joint. The goal-plan-standardized (GPS) treatment strategy has proven to be helpful in choosing the ideal individual treatment. It is based on individual patient demands on wrist function and an analysis of fracture instability in computed tomography (CT) scans. The “goal” is a realistic expectation assessed by patient and surgeon. The “plan” includes a benefit-risk analysis and selection of an appropriate treatment modality. The “standardized treatment” of surgical and follow-up treatment is based on biomechanical knowledge. Locking plate osteosynthesis aims to neutralize dislocating force vectors and to allow early active mobility. Unidirectional instability can be indirectly neutralized by palmar locking plate systems. A multidirectional instability can be addressed by multiple plating following the column theory. Distal shear and avulsion fractures may require a fragment-specific osteosynthesis approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4

Literatur

  1. Arora R, Gabl M, Gschwentner M et al (2009) A comparative study of clinical and radiologic outcomes of unstable colles type distal radius fractures in patients older than 70 years: nonoperative treatment versus volar locking plating. J Orthop Trauma 23:237–242

    Article  PubMed  Google Scholar 

  2. Arora R, Lutz M, Deml C et al (2011) A prospective randomized trial comparing nonoperative treatment with volar locking plate fixation for displaced and unstable distal radial fractures in patients sixty-five years of age and older. J Bone Joint Surg Am 93:2146–2153

    PubMed  Google Scholar 

  3. Bala Y, Bui QM, Wang XF et al (2015) Trabecular and cortical microstructure and fragility of the distal radius in women. J Bone Miner Res 30:621–629

    Article  PubMed  Google Scholar 

  4. Baumbach SF, Synek A, Traxler H et al (2015) The influence of distal screw length on the primary stability of volar plate osteosynthesis – a biomechanical study. J Orthop Surg Res 10:139

    Article  PubMed  PubMed Central  Google Scholar 

  5. Boswell S, Mciff TE, Trease CA et al (2007) Mechanical characteristics of locking and compression plate constructs applied dorsally to distal radius fractures. J Hand Surg Am 32:623–629

    Article  PubMed  Google Scholar 

  6. Brink PR, Rikli DA (2016) Four-Corner Concept: CT-Based Assessment of Fracture Patterns in Distal Radius. J Wrist Surg 5:147–151

    Article  CAS  PubMed  Google Scholar 

  7. Can U, Lattmann T, Crook D et al (2008) Combined dorsal and palmar plate osteosynthesis for intraarticular distal radius fractures. Unfallchirurg 111:607–612

    Article  CAS  PubMed  Google Scholar 

  8. Chen AC, Lin YH, Kuo HN et al (2013) Design optimisation and experimental evaluation of dorsal double plating fixation for distal radius fracture. Injury 44:527–534

    Article  PubMed  Google Scholar 

  9. Colles A (1814) On the fracture of the carpal extremity of the radius. Edinb Med Surg J 10:182–186

    Google Scholar 

  10. Crosby SN, Fletcher ND, Yap ER et al (2013) The mechanical stability of extra-articular distal radius fractures with respect to the number of screws securing the distal fragment. J Hand Surg Am 38:1097–1105

    Article  PubMed  Google Scholar 

  11. Drobetz H, Bryant AL, Pokorny T et al (2006) Volar fixed-angle plating of distal radius extension fractures: influence of plate position on secondary loss of reduction – a biomechanic study in a cadaveric model. J Hand Surg Am 31:615–622

    Article  PubMed  Google Scholar 

  12. Dupuytren G (1839) Des fractures de l’extremité inférieure du radius simulant les luxations du poignet. Orales Clini Chir 1:140

    Google Scholar 

  13. Evans S, Ramasamy A, Deshmukh SC (2014) Distal volar radial plates: how anatomical are they? Orthop Traumatol Surg Res 100:293–295

    Article  CAS  PubMed  Google Scholar 

  14. Fernandez DL, Jupiter JB (1995) Fractures of the Distal Radius: A Practical Approach to Management. Springer, New York

    Google Scholar 

  15. Forman J, Perry B, Alai A et al (2014) Injury tolerance of the wrist and distal forearm to impact loading onto outstretched hands. J Trauma Acute Care Surg 77:176–183

    Article  Google Scholar 

  16. Gabl M, Pechlaner S, Sailer R et al (1992) Dorsal compression fractures of the distal radius metaphysis. Long-term follow-up with conservative therapy. Aktuelle Traumatol 22:15–18

    CAS  PubMed  Google Scholar 

  17. Gabl M, Krappinger D, Arora R et al (2007) Acceptance of patient-related evaluation of wrist function following distal radius fracture (DRF). Handchirurgie Mikrochirurgie Plast Chir 39:68–72 (Organ der Deutschsprachigen Arbeitsgemeinschaft fur Handchirurgie : Organ der Deutschsprachigen Arbeitsgemeinschaft fur Mikrochirurgie der Peripheren Nerven und Gefasse)

    Article  CAS  Google Scholar 

  18. Hara T, Horii E, An KN et al (1992) Force distribution across wrist joint: application of pressure-sensitive conductive rubber. J Hand Surg Am 17:339–347

    Article  CAS  PubMed  Google Scholar 

  19. Harkonen R, Piirtomaa M, Alaranta H (1993) Grip strength and hand position of the dynamometer in 204 Finnish adults. J Hand Surg Br 18:129–132

    Article  CAS  PubMed  Google Scholar 

  20. Kandemir U, Matityahu A, Desai R et al (2008) Does a volar locking plate provide equivalent stability as a dorsal nonlocking plate in a dorsally comminuted distal radius fracture?: a biomechanical study. J Orthop Trauma 22:605–610

    Article  PubMed  Google Scholar 

  21. Lecomte O (1860) Recherches nouvelles sur les fractures indirectes de l’extrémité inférieure du radius. In: Archives Générales de Médicine, S 641–661

    Google Scholar 

  22. Lewis RM (1950) Colles fracture: Causative mechanism. Surgery 27:427–436

    Google Scholar 

  23. Mayer JH (1940) Colles’ Fracture. Br J Surg 27:629–642

    Article  Google Scholar 

  24. Medoff R (2009) Radiographic evaluation and classification of distal radius fracture. In: Slutsky DJ, Osterman AL (Hrsg) Fracture and injuries of the distal radius and carpus. Saunders, Philadelphia, S 19–31

    Google Scholar 

  25. Mehling I, Muller LP, Delinsky K et al (2010) Number and locations of screw fixation for volar fixed-angle plating of distal radius fractures: biomechanical study. J Hand Surg Am 35:885–891

    Article  PubMed  Google Scholar 

  26. Müller ME, Nazarian S, Koch P et al (1990) The Comprehensive Classification of Fractures of Long Bones. Springer-Verlag, Berlin, Heidelberg, New York

    Book  Google Scholar 

  27. Pechlaner S (1999) Handchirurgie I. Die Hyperextensionsverletzung des Handgelenkes. Experimentelle Untersuchungen und klinische Aspekte. Einhorn-Presse Verlag, Reinbek

    Google Scholar 

  28. Pechlaner S, Kathrein A, Gabl M et al (2002) Distale Radiusfrakturen und Begleitverletzungen. Handchirurgie Mikrochirurgie Plast Chir 34:150–157 (Organ der Deutschsprachigen Arbeitsgemeinschaft fur Handchirurgie : Organ der Deutschsprachigen Arbeitsgemeinschaft fur Mikrochirurgie der Peripheren Nerven und Gefasse)

    Article  CAS  Google Scholar 

  29. Rikli DA, Regazzoni P (1996) Fractures of the distal end of the radius treated by internal fixation and early function. A preliminary report of 20 cases. J Bone Joint Surg Br 78:588–592

    CAS  PubMed  Google Scholar 

  30. Rikli DA, Honigmann P, Babst R et al (2007) Intra-Articular Pressure Measurement in the Radioulnocarpal Joint Using a Novel Sensor: In Vitro and In Vivo Results. J Hand Surg 32:67–75

    Article  Google Scholar 

  31. Rudig L, Mehling I, Klitscher D et al (2009) Biomechanical study of four palmar locking plates and one non-locking palmar plate for distal radius fractures: stiffness and load to failure tests in a cadaver model. Biomed Tech (Berl) 54:150–158

    Article  Google Scholar 

  32. Sailer R, Gabl PSF-GMM (1992) Plate osteosynthesis of the radius. Own implant and technique. Handchirurgie Mikrochirurgie Plast Chir 24:284–291 (Organ der Deutschsprachigen Arbeitsgemeinschaft fur Handchirurgie : Organ der Deutschsprachigen Arbeitsgemeinschaft fur Mikrochirurgie der Peripheren Nerven und Gefasse)

    CAS  Google Scholar 

  33. Schuind FA, Cantraine FR, Fabeck L et al (1997) Radiocarpal articular pressures during the reduction of distal radius fractures. J Orthop Trauma 11:295–299

    Article  CAS  PubMed  Google Scholar 

  34. Stevens JH (1920) Compression Fractures of the Lower End of the Radius. Ann Surg 71:594–618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Synek A, Chevalier Y, Baumbach SF et al (2015) The influence of bone density and anisotropy in finite element models of distal radius fracture osteosynthesis: Evaluations and comparison to experiments. J Biomech 48:4116–4123

    Article  CAS  PubMed  Google Scholar 

  36. Zimmermann R, Gabl M, Lutz M et al (2003) Injectable calcium phosphate bone cement Norian SRS for the treatment of intra-articular compression fractures of the distal radius in osteoporotic women. Arch Orthop Trauma Surg 123:22–27

    PubMed  Google Scholar 

  37. Zmurko MG, Eglseder WA Jr., Belkoff SM (1998) Biomechanical evaluation of distal radius fracture stability. J Orthop Trauma 12:46–50

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Schmidle.

Ethics declarations

Interessenkonflikt

M. Gabl, R. Arora und G. Schmidle geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Additional information

Redaktion

D. Stengel, Berlin

C. Bartl, München

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gabl, M., Arora, R. & Schmidle, G. Biomechanik distaler Radiusfrakturen. Unfallchirurg 119, 715–722 (2016). https://doi.org/10.1007/s00113-016-0219-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00113-016-0219-8

Schlüsselwörter

Keywords

Navigation