Skip to main content
Log in

Arthroskopische Behandlung von Knorpelverletzungen am Sprunggelenk

Evidenzbasierte Therapie

Arthroscopic treatment of chondral lesions of the ankle joint

Evidence-based therapy

  • Leitthema
  • Published:
Der Unfallchirurg Aims and scope Submit manuscript

Zusammenfassung

Sprunggelenkdistorsionen stellen die häufigste Verletzung der unteren Extremität dar. Diese können zu Bandverletzungen und osteochondralen Läsionen führen. Bis zu 50 % der Patienten mit akuten Sprunggelenkfrakturen oder -distorsionen weisen eine Schädigung des Knorpels und/oder der darunter liegenden subchondralen Knochenschichten als Folge der Verletzung auf. Eine spontane Heilung ist in Fällen von „bone bruise“ im subchondralen Knochen in allen Altersstufen, bei isolierten Knorpelverletzungen jedoch nur bei pädiatrischen Patienten möglich. In vielen Fällen führen chondrale oder osteochondrale Verletzungen zu einer zunehmenden Demarkierung des betroffenen Bezirks und können, wenn nicht rechtzeitig erkannt und therapiert, eine schleichende Degeneration des betroffenen Gelenks bewirken. Eine weitere Gruppe osteochondraler Veränderungen sind unklarer Genese und werden dem Überbegriff der Osteochondrosis dissecans zugeordnet. Durchblutungsstörungen werden als eine von mehreren möglichen Ursachen dieser Veränderungen diskutiert.

Durch die heute wesentlich sensitivere Diagnostik mit MRT und CT können chondrale und osteochondrale Defekte bereits frühzeitig einer entsprechenden Therapie zugeführt werden. Eine ausschließliche konservative Therapie ist nur bei pädiatrischen Patienten mit Chancen auf Ausheilung verbunden. Beim Erwachsenen sind konservative Maßnahmen lediglich als Adjuvans zur operativen Therapie zu betrachten.

Anhand einer umfassenden Literaturrecherche werden aktuelle Konzepte der arthroskopischen Behandlung (osteo-)chondraler Verletzungen und Veränderungen am Talus vorgestellt und kritisch beleuchtet. Dominierend in der arthroskopischen Therapie sind Mikrofrakturtechniken mit Kürettage bzw. retrograde Anbohrungen bei erhaltenem Knorpelüberzug. Die Implantation von juvenilem Knorpelgranulat oder autologer Chondrozyten ist ebenfalls in arthroskopischer Technik möglich. Osteochondrale Frakturen („flake fracture“) werden in der Regel arthroskopisch gestützt mini-offen versorgt. Knorpel-Knochen-Transplantationen (OATS), Implantation von Membranen mit oder ohne Spongiosaplastik, evtl. mit Wachstumsfaktoren bzw. Stammzellen werden kombiniert arthroskopisch/mini-offen durchgeführt. Die Ergebnisse der Literatur werden durch eigene Ergebnisse ergänzt und diskutiert.

Abstract

Ankle sprains are the most relevant injuries of the lower extremities and can lead to damage to ligaments and osteochondral lesions. Up to 50 % of patients with a sprained ankle later develop a lesion of the cartilage in the ankle joint or an osteochondral lesion of the talus. This can lead to osteoarthritis of the injured ankle joint. Spontaneous healing is possible in all age groups in cases of a bone bruise in the subchondral bone but in isolated chondral injuries is only useful in pediatric patients. In many cases chondral and osteochondral injuries lead to increasing demarcation of the affected area and can result in progressive degeneration of the joint if not recognized in time. There also exist a certain number of osteochondral changes of the articular surface of the talus without any history of relevant trauma, which are collectively grouped under the term osteochondrosis dissecans. Perfusion disorders are discussed as one of many possible causes of these alterations. Nowadays, chondral and osteochondral defects can be treated earlier due to detection using very sensitive magnetic resonance imaging (MRI) and computed tomography (CT) techniques. The use of conservative treatment only has a chance of healing in pediatric patients. Conservative measures for adults should only be considered as adjuvant treatment to surgery.

Based on a comprehensive analysis of the current literature, this article gives an overview and critical analysis of the current concepts for treatment of chondral and osteochondral injuries and lesions of the talus. With arthroscopic therapy curettage and microfracture of talar lesions are the predominant approaches or retrograde drilling of the defect is another option when the chondral coating is retained. Implantation of autologous chondral cells or homologous juvenile cartilage tissue is also possible with arthroscopic techniques. Osteochondral fractures (flake fracture) are usually performed as a mini-open procedure supported by arthroscopy. The use of the osteochondral autograft transfer system (OATS), implantation of membranes with or without autologous bone marrow transfer and possibly with growth factors or implantation of stem cells are carried out in combination with arthroscopic mini-open procedures. The results from the literature are discussed and compared with own results after arthroscopic treatment of chondral lesions of the talus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5
Abb. 6
Abb. 7
Abb. 8

Literatur

  1. Adams SB Jr, Demetracopoulos CA, Parekh SG, Easley ME, Robbins J (2014) Arthroscopic particulated juvenile cartilage allograft transplantation for the treatment of osteochondral lesions of the talus. Arthrosc Tech 3(4):e533–e537

    Article  PubMed Central  Google Scholar 

  2. Anders S, Volz M, Frick H, Gellissen JA (2013) Randomized, controlled trial comparing Autologous Matrix-Induced Chondrogenesis (AMIC(R)) to microfracture: analysis of 1- and 2-year follow-up data of 2 centers. Open Orthop J 7:133–143

    Article  PubMed Central  PubMed  Google Scholar 

  3. Aurich M, Bedi HS, Smith PJ, Rolauffs B, Muckley T, Clayton J et al (2011) Arthroscopic treatment of osteochondral lesions of the ankle with matrix-associated chondrocyte implantation: early clinical and magnetic resonance imaging results. Am J Sports Med 39(2):311–319

    Article  PubMed  Google Scholar 

  4. Baums MH, Schultz W, Kostuj T, Klinger HM (2014) Cartilage repair techniques of the talus: an update. World J Orthop 5(3):171–179

    Article  PubMed Central  Google Scholar 

  5. Berndt AL, Harty M (1959) Transchondral fractures (osteochondritis dissecans) of the talus. J Bone Joint Surg Am 41-A:988–1020

    CAS  PubMed  Google Scholar 

  6. van den Borne MP, Raijmakers NJ, Vanlauwe J, Victor J, de Jong SN, Bellemans J et al (2007) International Cartilage Repair Society (ICRS) and oswestry macroscopic cartilage evaluation scores validated for use in Autologous Chondrocyte Implantation (ACI) and microfracture. Osteoarthritis Cartilage 15(12):1397–1402

    Article  PubMed  Google Scholar 

  7. Buda R, Vannini F, Castagnini F, Cavallo M, Ruffilli A, Ramponi L et al (2015) Regenerative treatment in osteochondral lesions of the talus: autologous chondrocyte implantation versus one-step bone marrow derived cells transplantation. Int Orthop 39(5):893–900

    Article  PubMed  Google Scholar 

  8. Chuckpaiwong B, Berkson EM, Theodore GH (2008) Microfracture for osteochondral lesions of the ankle: outcome analysis and outcome predictors of 105 cases. Arthroscopy 24(1):106–112

    Article  PubMed  Google Scholar 

  9. Draijer F, Havemann D, Bielstein D (1995) [Injury analysis of pediatric talus fractures]. Unfallchirurg 98(3):130–132

    CAS  PubMed  Google Scholar 

  10. Elias I, Zoga AC, Morrison WB, Besser MP, Schweitzer ME, Raikin SM (2007) Osteochondral lesions of the talus: localization and morphologic data from 424 patients using a novel anatomical grid scheme. Foot Ankle Int 28(2):154–161

    Article  PubMed  Google Scholar 

  11. Ferkel RD, Zanotti RM, Komenda GA, Sgaglione NA, Cheng MS, Applegate GR et al (2008) Arthroscopic treatment of chronic osteochondral lesions of the talus: long-term results. Am J Sports Med 36(9):1750–1762

    Article  PubMed  Google Scholar 

  12. Fuchs M, Vosshenrich R, Dumont C, Sturmer KM (2003) [Refixation of osteochondral fragments using absorbable implants. First results of a retrospective study]. Chirurg 74(6):554–561

    Article  CAS  PubMed  Google Scholar 

  13. Giannini S, Buda R, Vannini F, Di Caprio F, Grigolo B (2008) Arthroscopic autologous chondrocyte implantation in osteochondral lesions of the talus: surgical technique and results. Am J Sports Med 36(5):873–880

    Article  PubMed  Google Scholar 

  14. Giza E, Sullivan M, Ocel D, Lundeen G, Mitchell ME, Veris L et al (2010) Matrix-induced autologous chondrocyte implantation of talus articular defects. Foot Ankle Int 31(9):747–753

    Article  PubMed  Google Scholar 

  15. Gormeli G, Karakaplan M, Gormeli CA, Sarikaya B, Elmali N, Ersoy Y (2015) Clinical effects of platelet-rich plasma and hyaluronic acid as an additional therapy for talar osteochondral lesions treated with microfracture surgery: a prospective randomized clinical trial. Foot Ankle Int 36(8):891–900

    Article  PubMed  Google Scholar 

  16. Kok AC, Tuijthof GJ, den Dunnen S, van Tiel J, Siebelt M, Everts V et al (2013) No effect of hole geometry in microfracture for talar osteochondral defects. Clin Orthop Relat Res 471(11):3653–3662

    Article  PubMed Central  PubMed  Google Scholar 

  17. Kono M, Takao M, Naito K, Uchio Y, Ochi M (2006) Retrograde drilling for osteochondral lesions of the talar dome. Am J Sports Med 34(9):1450–1456

    Article  PubMed  Google Scholar 

  18. Lee KT, Choi YS, Lee YK, Cha SD, Koo HM (2011) Comparison of MRI and arthroscopy in modified MOCART scoring system after autologous chondrocyte implantation for osteochondral lesion of the talus. Orthopedics 34(8):e356–e362

    PubMed  Google Scholar 

  19. Lee DH, Lee KB, Jung ST, Seon JK, Kim MS, Sung IH (2012) Comparison of early versus delayed weightbearing outcomes after microfracture for small to midsized osteochondral lesions of the talus. Am J Sports Med 40(9):2023–2028

    Article  Google Scholar 

  20. Loomer R, Fisher C, Lloyd-Smith R, Sisler J, Cooney T (1993) Osteochondral lesions of the talus. Am J Sports Med 21(1):13–19

    Article  CAS  PubMed  Google Scholar 

  21. Marlovits S, Striessnig G, Resinger CT, Aldrian SM, Vecsei V, Imhof H et al (2004) Definition of pertinent parameters for the evaluation of articular cartilage repair tissue with high-resolution magnetic resonance imaging. Eur J Radiol 52(3):310–319

    Article  PubMed  Google Scholar 

  22. Mei-Dan O, Carmont MR, Laver L, Mann G, Maffulli N, Nyska M (2012) Platelet-rich plasma or hyaluronate in the management of osteochondral lesions of the talus. Am J Sports Med 40(3):534–541

    Article  PubMed  Google Scholar 

  23. Parisien JS (1986) Arthroscopic treatment of osteochondral lesions of the talus. Am J Sports Med 14(3):211–217

    Article  CAS  PubMed  Google Scholar 

  24. Richter M, Zech S (2008) 3D imaging (ARCADIS)-based Computer Assisted Surgery (CAS) guided retrograde drilling in osteochondritis dissecans of the talus. Foot Ankle Int 29(12):1243–1248

    Article  PubMed  Google Scholar 

  25. Richter M, Zech S (2011) [Navigated retrograde drilling in Osteochondrosis dissecans (OCD) of the talus]. Oper Orthop Traumatol 23(5):473–482

    Article  CAS  PubMed  Google Scholar 

  26. Sadlik B, Wiewiorski M (2015) Implantation of a collagen matrix for an AMIC repair during dry arthroscopy. Knee Surg Sports Traumatol Arthrosc 23(8):2349–2352

    Article  PubMed  Google Scholar 

  27. Savage-Elliott I, Ross KA, Smyth NA, Murawski CD, Kennedy JG (2014) Osteochondral lesions of the talus: a current concepts review and evidence-based treatment paradigm. Foot Ankle Spec 7(5):414–422

    Article  PubMed  Google Scholar 

  28. Steadman JR, Rodkey WG, Rodrigo JJ (2001) Microfracture: surgical technique and rehabilitation to treat chondral defects. Clin Orthop Relat Res (391 Suppl):S362–S369

  29. Steadman JR, Rodkey WG, Briggs KK (2002) Microfracture to treat full-thickness chondral defects: surgical technique, rehabilitation, and outcomes. J Knee Surg 15(3):170–176

    PubMed  Google Scholar 

  30. Usuelli FG, de Girolamo L, Grassi M, D̕Ambrosi R, Montrasio UA, Boga M (2015) All-Arthroscopic Autologous matrix-induced chondrogenesis for the treatment of osteochondral lesions of the talus. Arthrosc Tech 4(3):e255–e259

    Article  PubMed Central  PubMed  Google Scholar 

  31. Vannini F, Cavallo M, Baldassarri M, Castagnini F, Olivieri A, Ferranti E et al (2014) Treatment of juvenile osteochondritis dissecans of the talus: current concepts review. Joints 2(4):188–191

    PubMed Central  PubMed  Google Scholar 

  32. Zengerink M, Struijs PA, Tol JL, van Dijk CN (2010) Treatment of osteochondral lesions of the talus: a systematic review. Knee Surg, Sports Traumatol Arthrosc 18(2):238–246

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Thomas.

Ethics declarations

Interessenkonflikt

Der korrespondierende Autor gibt an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine Studien an Menschen oder Tieren.

Additional information

Redaktion

H. Polzer, München

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thomas, M., Jordan, M. & Hamborg-Petersen, E. Arthroskopische Behandlung von Knorpelverletzungen am Sprunggelenk. Unfallchirurg 119, 100–108 (2016). https://doi.org/10.1007/s00113-015-0136-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00113-015-0136-2

Schlüsselwörter

Keywords

Navigation