Skip to main content

Advertisement

Log in

Critical role of HMGA proteins in cancer cell chemoresistance

  • Review
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

The high-mobility group A (HMGA) proteins are frequently overexpressed in human malignancies and correlate with the presence of metastases and reduced patient survival. Here, we highlight the main studies evidencing a critical role of HMGA in chemoresistance, mainly by activating Akt signaling, impairing p53 activity, and regulating the expression of microRNAs that target genes involved in the susceptibility of cancer cells to antineoplastic agents. Therefore, these studies account for the association of HMGA overexpression with patient poor outcome, indicating the impairment of HMGA as a fascinating perspective for effectively improving cancer therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Groenendijk F, Bernards R (2014) Drug resistance to targeted therapies: Déjà vu all over again. Mol Oncol 8(6):1067–1083

    Article  CAS  PubMed  Google Scholar 

  2. Bouwman P, Jonkers J (2012) The effects of deregulated DNA damage signalling on cancer chemotherapy response and resistance. Nat Rev Cancer 12:587–598

    Article  CAS  PubMed  Google Scholar 

  3. Salehan MR, Morse HR (2013) DNA damage repair and tolerance: a role in chemotherapeutic drug resistance. Br J Biomed Sci 70(1):31–40

    Article  CAS  PubMed  Google Scholar 

  4. Wilson TR, Johnston PG, Longley DB (2009) Anti-apoptotic mechanisms of drug resistance in cancer. Curr Cancer Drug Targets 9(3):307–319

    Article  CAS  PubMed  Google Scholar 

  5. Baker EK, El-Osta A (2003) The rise of DNA methylation and the importance of chromatin on multidrug resistance in cancer. Exp Cell Res 290:177–194

    Article  CAS  PubMed  Google Scholar 

  6. Hoey T (2010) Drug resistance, epigenetics, and tumor cell heterogeneity. Sci Transl Med 2(28):28ps19

    Article  PubMed  Google Scholar 

  7. Brown R, Curry E, Magnani L, Wilhelm-Benartzi CS, Borley J (2014) Poised epigenetic states and acquired drug resistance in cancer. Nat Rev Cancer 14(11):747–753

    Article  CAS  PubMed  Google Scholar 

  8. Riddick DS, Lee C, Ramji S, Chinje EC, Cowen RL, Williams KJ, Patterson AV, Stratford IJ, Morrow CS, Townsend AJ et al (2005) Cancer chemotherapy and drug metabolism. Drug Metab Dispos 33(8):1083–1096

    Article  CAS  PubMed  Google Scholar 

  9. Li W, Zhang H, Assaraf YG, Zhao K, Xu X, Xie J, Yang DH, Chen ZS (2016) Overcoming ABC transporter-mediated multidrug resistance: molecular mechanisms and novel therapeutic drug strategies. Drug Resist Updat 27:14–29

    Article  CAS  PubMed  Google Scholar 

  10. Yu F, Yao H, Zhu P, Zhang X, Pan Q, Gong C, Huang Y, Hu X, Su F, Lieberman J et al (2007) Let-7 regulates self renewal and tumorigenicity of breast cancer cells. Cell 131(6):1109–1123

    Article  CAS  PubMed  Google Scholar 

  11. Johnson KR, Lehn DA, Reeves R (1989) Alternative processing of mRNAs encoding mammalian chromosomal high-mobility-group proteins HMG-I and HMG-Y. Mol Cell Biol 9(5):2114–2123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Thanos D, Maniatis T (1992) The high mobility group protein HMG I(Y) is required for NF-κB-dependent virus induction of the human IFN-β gene. Cell 27:777–789

    Article  Google Scholar 

  13. Grosschedl R, Giese K, Pagel J (1994) HMG domain proteins: architectural elements in the assembly of nucleoprotein structures. Trends Genet 10(3):94–100

    Article  CAS  PubMed  Google Scholar 

  14. Zhou X, Benson KF, Ashar HR, Chada K (1995) Mutation responsible for the mouse pygmy phenotype in the developmentally regulated factor HMGI-C. Nature 376:771–774

    Article  CAS  PubMed  Google Scholar 

  15. Chiappetta G, Avantaggiato V, Visconti R, Fedele M, Battista S, Trapasso F, Merciai BM, Fidanza V, Giancotti V, Santoro M et al (1996) High level expression of the HMGI (Y) gene during embryonic development. Oncogene 13:2439–2446

    CAS  PubMed  Google Scholar 

  16. Fusco A, Fedele M (2007) Roles of HMGA proteins in cancer. Nat Rev Cancer 7(12):899–910

    Article  CAS  PubMed  Google Scholar 

  17. Schoenmakers EF, Wanschura S, Mols R, Bullerdiek J, Van den Berghe H, Van de Ven WJ (1995) Recurrent rearrangements in the high mobility group protein gene, HMGI-C, in benign mesenchymal tumours. Nat Genet 10:436–444

    Article  CAS  PubMed  Google Scholar 

  18. Fedele M, Fusco A (2010) HMGA and cancer. Biochim Biophys Acta 1799(1–2):48–54

    Article  CAS  PubMed  Google Scholar 

  19. Pallante P, Sepe R, Puca F, Fusco A (2015) High mobility group a proteins as tumor markers. Front Med (Lausanne) 2:15

    Google Scholar 

  20. Pierantoni GM, Conte A, Rinaldo C, Tornincasa M, Gerlini R, Federico A, Valente D, Medico E, Fusco A (2015) Deregulation of HMGA1 expression induces chromosome instability through regulation of spindle assembly checkpoint genes. Oncotarget 6(19):17342–17353

    Article  PubMed  PubMed Central  Google Scholar 

  21. Davidson B, Holth A, Hellesylt E, Tan TZ, Huang RY, Tropé C, Nesland JM, Thiery JP (2015) The clinical role of epithelial-mesenchymal transition and stem cell markers in advanced-stage ovarian serous carcinoma effusions. Hum Pathol 46(1):1–8

    Article  CAS  PubMed  Google Scholar 

  22. Cai J, Shen G, Liu S, Meng Q (2016) Downregulation of HMGA2 inhibits cellular proliferation and invasion, improves cellular apoptosis in prostate cancer. Tumour Biol 37(1):699–707

    Article  CAS  PubMed  Google Scholar 

  23. Reeves R, Edberg DD, Li Y (2001) Architectural transcription factor HMGI(Y) promotes tumor progression and mesenchymal transition of human epithelial cells. Mol Cell Biol 21:575–594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Trapasso F, Sarti M, Cesari R, Yendamuri S, Dumon KR, Aqeilan RI, Pentimalli F, Infante L, Alder H, Abe N et al (2004) Therapy of human pancreatic carcinoma based on suppression of HMGA1 protein synthesis in preclinical models. Cancer Gene Ther 11:633–641

    Article  CAS  PubMed  Google Scholar 

  25. Palmieri D, Valentino T, D'Angelo D, De Martino I, Postiglione I, Pacelli R, Croce CM, Fedele M, Fusco A (2011) HMGA proteins promote ATM expression and enhance cancer cell resistance to genotoxic agents. Oncogene 30(27):3024–3035

    Article  CAS  PubMed  Google Scholar 

  26. D'Angelo D, Mussnich P, Rosa R, Bianco R, Tortora G, Fusco A (2014) High mobility group A1 protein expression reduces the sensitivity of colon and thyroid cancer cells to antineoplastic drugs. BMC Cancer 14:851

    Article  PubMed  PubMed Central  Google Scholar 

  27. Berlingieri MT, Manfioletti G, Santoro M, Bandiera A, Visconti R, Giancotti V, Fusco A (1995) Inhibition of HMGI-C protein synthesis suppresses retrovirally induced neoplastic transformation of rat thyroid cells. Mol Cell Biol 15:1545–1553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Baldassarre G, Fedele M, Battista S, Vecchione A, Klein-Szanto AJ, Santoro M, Waldmann TA, Azimi N, Croce CM, Fusco A (2001) Onset of natural killer cell lymphomas in transgenic mice carrying a truncated HMGI-C gene by the chronic stimulation of the IL-2 and IL-15 pathway. Proc Natl Acad Sci U S A 98:7970–7975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Fedele M, Battista S, Kenyon L, Baldassarre G, Fidanza V, Klein-Szanto AJ, Parlow AF, Visone R, Pierantoni GM, Outwater E et al (2002) Overexpression of the HMGA2 gene in transgenic mice leads to the onset of pituitary adenomas. Oncogene 21:3190–3198

    Article  CAS  PubMed  Google Scholar 

  30. Xu Y, Sumter TF, Bhattacharya R, Tesfaye A, Fuchs EJ, Wood LJ, Huso DL, Resar LM (2004) The HMG-I oncogene causes highly penetrant, aggressive lymphoid malignancy in transgenic mice and is overexpressed in human leukemia. Cancer Res 64:3371–3375

    Article  CAS  PubMed  Google Scholar 

  31. Fedele M, Pentimalli F, Baldassarre G, Battista S, Klein-Szanto AJ, Kenyon L, Visone R, De Martino I, Ciarmiello A, Arra C et al (2005) Transgenic mice overexpressing the wild-type form of the HMGA1 gene develop mixed growth hormone/prolactin cell pituitary adenomas and natural killer cell lymphomas. Oncogene 24:3427–3435

    Article  CAS  PubMed  Google Scholar 

  32. Belton A, Gabrovsky A, Bae YK, Reeves R, Iacobuzio-Donahue C, Huso DL, Resar LM (2012) HMGA1 induces intestinal polyposis in transgenic mice and drives tumor progression and stem cell properties in colon cancer cells. PLoS One 7:e30034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Colamaio M, Tosti N, Puca F, Mari A, Gattordo R, Kuzay Y, Federico A, Pepe A, Sarnataro D, Ragozzino E et al (2016) HMGA1 silencing reduces stemness and temozolomide resistance in glioblastoma stem cells. Expert Opin Ther Targets 20(10):1169–1179

    Article  CAS  PubMed  Google Scholar 

  34. Pegoraro S, Ros G, Piazza S, Sommaggio R, Ciani Y, Rosato A, Sgarra R, Del Sal G, Manfioletti G (2013) HMGA1 promotes metastatic processes in basal-like breast cancer regulating EMT and stemness. Oncotarget 4(8):1293–1308

    Article  PubMed  PubMed Central  Google Scholar 

  35. Puca F, Colamaio M, Federico A, Gemei M, Tosti N, Bastos AU, Del Vecchio L, Pece S, Battista S, Fusco A (2014) HMGA1 silencing restores normal stem cell characteristics in colon cancer stem cells by increasing p53 levels. Oncotarget 5(10):3234–3245

    Article  PubMed  PubMed Central  Google Scholar 

  36. Torgovnick A, Schumacher B (2015) DNA repair mechanisms in cancer development and therapy. Front Genet 6:157

    Article  PubMed  PubMed Central  Google Scholar 

  37. Subramanian D, Griffitha JD (2005) Interactions between p53, hMSH2–hMSH6 and HMG I(Y) on Holliday junctions and bulged bases. Nucleic Acids Res 2002 30(11):2427–2434

    Article  Google Scholar 

  38. Reeves R, Adair JE (2005) Role of high mobility group (HMG) chromatin proteins in DNA repair. DNA Repair 4:926–938

    Article  CAS  PubMed  Google Scholar 

  39. Borrmann L, Schwanbeck R, Heyduk T, Seebeck B, Rogalla P, Bullerdiek J, Wisniewski JR (2003) High mobility group A2 protein and its derivatives bind a specific region of the promoter of DNA repair gene ERCC1 and modulate its activity. Nucleic Acids Res 31:6841–6851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Baldassarre G, Battista S, Belletti B, Thakur S, Pentimalli F, Trapasso F, Fedele M, Pierantoni G, Croce CM, Fusco A (2003) Negative regulation of BRCA1 gene expression by HMGA1 proteins accounts for the reduced BRCA1 protein levels in sporadic breast carcinoma. Mol Cell Biol 23:2225–2238

    Article  PubMed  PubMed Central  Google Scholar 

  41. Muller-Tidow C, Ji P, Diederichs S, Potratz J, Bäumer N, Köhler G, Cauvet T, Choudary C, van der Meer T, Chan WY et al (2004) The cyclin A1-CDK2 complex regulates DNA double-strand break repair. Mol Cell Biol 24:8917–8928

    Article  PubMed  PubMed Central  Google Scholar 

  42. Summer H, Li O, Bao Q, Zhan L, Peter S, Sathiyanathan P, Henderson D, Klonisch T, Goodman SD, Dröge P (2009) HMGA2 exhibits dRP/AP site cleavage activity and protects cancer cells from DNA-damage-induced cytotoxicity during chemotherapy. Nucleic Acids Res 37(13):4371–4384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Frasca F, Rustighi A, Malaguarnera R, Altamura S, Vigneri P, Del Sal G, Giancotti V, Pezzino V, Vigneri R, Manfioletti G (2006) HMGA1 inhibits the function of p53 family members in thyroid cancer cells. Cancer Res 66(6):2980–2989

    Article  CAS  PubMed  Google Scholar 

  44. Esposito F, Tornincasa M, Chieffi P, De Martino I, Pierantoni GM, Fusco A (2010) High-mobility group A1 proteins regulate p53-mediated transcription of Bcl-2 gene. Cancer Res 70(13):5379–5388

    Article  CAS  PubMed  Google Scholar 

  45. Mussnich P, D'Angelo D, Leone V, Croce CM, Fusco A (2013) The high mobility group A proteins contribute to thyroid cell transformation by regulating miR-603 and miR-10b expression. Mol Oncol 7(3):531–542

    Article  CAS  PubMed  Google Scholar 

  46. Yang F, Li QJ, Gong ZB, Zhou L, You N, Wang S, Li XL, Li JJ, An JZ, Wang DS et al (2014) MicroRNA-34a targets Bcl-2 and sensitizes human hepatocellular carcinoma cells to sorafenib treatment. Technol Cancer Res Treat 13(1):77–86

    CAS  PubMed  Google Scholar 

  47. Natarajan S, Hombach-Klonisch S, Dröge P, Klonisch T (2013) HMGA2 inhibits apoptosis through interaction with ATR-CHK1 signaling complex in human cancer cells. Neoplasia 15(3):263–280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Liau SS, Wang E (2008) HMGA1 is a molecular determinant of chemoresistance to gemcitabine in pancreatic adenocarcinoma. Clin Cancer Res 14(5):1470–1477

    Article  PubMed  PubMed Central  Google Scholar 

  49. Roberts CM, Tran MA, Pitruzzello MC, Wen W, Loeza J, Dellinger TH, Mor G, Glackin CA (2016) TWIST1 drives cisplatin resistance and cell survival in an ovarian cancer model, via upregulation of GAS6, L1CAM, and Akt signalling. Sci Rep 6:37652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Wu H, Liang Y, Shen L, Shen L (2016) MicroRNA-204 modulates colorectal cancer cell sensitivity in response to 5-fluorouracil-based treatment by targeting high mobility group protein A2. Biol Open 5(5):563–570

    Article  PubMed  PubMed Central  Google Scholar 

  51. Cutignano A, Nuzzo G, D'Angelo D, Borbone E, Fusco A, Fontana A (2013) Mycalol: a natural lipid with promising cytotoxic properties against human anaplastic thyroid carcinoma cells. Angew Chem Int Ed Engl 52(35):9256–9260

    Article  CAS  PubMed  Google Scholar 

  52. Kushwaha D, Ramakrishnan V, Ng K, Steed T, Nguyen T, Futalan D, Akers JC, Sarkaria J, Jiang T, Chowdhury D et al (2014) A genome-wide miRNA screen revealed miR-603 as a MGMT-regulating miRNA in glioblastomas. Oncotarget 5(12):4026–4039

    Article  PubMed  PubMed Central  Google Scholar 

  53. Forzati F, Federico A, Pallante P, Abbate A, Esposito F, Malapelle U, Sepe R, Palma G, Troncone G, Scarfò M et al (2012) CBX7 is a tumor suppressor in mice and humans. J Clin Invest 122(2):612–623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Sepe R, Formisano U, Federico A, Forzati F, Bastos AU, D'Angelo D, Cacciola NA, Fusco A, Pallante P (2015) CBX7 and HMGA1b proteins act in opposite way on the regulation of the SPP1 gene expression. Oncotarget 6(5):2680–2692

    Article  PubMed  PubMed Central  Google Scholar 

  55. Cacciola NA, Sepe R, Forzati F, Federico A, Pellecchia S, Malapelle U, De Stefano A, Rocco D, Fusco A, Pallante P (2015) Restoration of CBX7 expression increases the susceptibility of human lung carcinoma cells to irinotecan treatment. Naunyn Schmiedeberg's Arch Pharmacol 388(11):1179–1186

    Article  CAS  Google Scholar 

  56. Di Leva G, Garofalo M, Croce CM (2014) MicroRNAs in cancer. Annu Rev Pathol 9:287–314

    Article  CAS  PubMed  Google Scholar 

  57. Ahmad A, Ginnebaugh KR, Yin S, Bollig-Fischer A, Reddy KB, Sarkar FH (2015) Functional role of miR-10b in tamoxifen resistance of ER-positive breast cancer cells through down-regulation of HDAC4. BMC Cancer 15:540

    Article  PubMed  PubMed Central  Google Scholar 

  58. Nishida N, Yamashita S, Mimori K, Sudo T, Tanaka F, Shibata K, Yamamoto H, Ishii H, Doki Y, Mori M (2012) MicroRNA-10b is a prognostic indicator in colorectal cancer and confers resistance to the chemotherapeutic agent 5-fluorouracil in colorectal cancer cells. Ann Surg Oncol 19(9):3065–3071

    Article  PubMed  Google Scholar 

  59. Medimegh I, Omrane I, Privat M, Uhrhummer N, Ayari H, Belaiba F, Benayed F, Benromdhan K, Mader S, Bignon IJ et al (2014) MicroRNAs expression in triple negative vs non triple negative breast cancer in Tunisia: interaction with clinical outcome. PLoS One 9(11):e111877

    Article  PubMed  PubMed Central  Google Scholar 

  60. Chen JC, Su YH, Chiu CF, Chang YW, Yu YH, Tseng CF, Chen HA, Su JL (2014) Suppression of dicer increases sensitivity to gefitinib in human lung cancer cells. Ann Surg Oncol 21(Suppl 4):S555–S563

    Article  PubMed  Google Scholar 

  61. Pogribny IP, Filkowski JN, Tryndyak VP, Golubov A, Shpyleva SI, Kovalchuk O (2010) Alterations of microRNAs and their targets are associated with acquired resistance of MCF-7 breast cancer cells to cisplatin. Int J Cancer 127(8):1785–1794

    Article  CAS  PubMed  Google Scholar 

  62. Pink RC, Samuel P, Massa D, Caley DP, Brooks SA, Carter DR (2015) The passenger strand, miR-21-3p, plays a role in mediating cisplatin resistance in ovarian cancer cells. Gynecol Oncol 137(1):143–151

    Article  CAS  PubMed  Google Scholar 

  63. Tao J, Lu Q, Wu D, Li P, Xu B, Qing W, Wang M, Zhang Z, Zhang W (2011) microRNA-21 modulates cell proliferation and sensitivity to doxorubicin in bladder cancer cells. Oncol Rep 25:1721–1729

    CAS  PubMed  Google Scholar 

  64. Shi GH, Ye DW, Yao XD, Zhang SL, Dai B, Zhang HL, Shen YJ, Zhu Y, Zhu YP, Xiao WJ et al (2010) Involvement of microRNA-21 in mediating chemoresistance to docetaxel in androgen-independent prostate cancer PC3 cells. Acta Pharmacol Sin 31:867–873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Wang WZ, Lin XH, Pu QH, Liu MY, Li L, Wu LR, Wu QQ, Mao JW, Zhu JY, Jin XB (2014) Targeting miR-21 sensitizes Ph + ALL Sup-b15 cells to imatinib-induced apoptosis through upregulation of PTEN. Biochem Biophys Res Commun 454(3):423–428

    Article  CAS  PubMed  Google Scholar 

  66. Song WF, Wang L, Huang WY, Cai X, Cui JJ, Wang LW (2013) MiR-21 upregulation induced by promoter zone histone acetylation is associated with chemoresistance to gemcitabine and enhanced malignancy of pancreatic cancer cells. Asian Pac J Cancer Prev 14(12):7529–7536

    Article  PubMed  Google Scholar 

  67. Zhou M, Liu Z, Zhao Y, Ding Y, Liu H, Xi Y, Xiong W, Li G, Lu J, Fodstad O et al (2010) MicroRNA-125b confers the resistance of breast cancer cells to paclitaxel through suppression of pro-apoptotic Bcl-2 antagonist killer 1 (Bak1) expression. J Biol Chem 285(28):21496–21507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Mussnich P, Rosa R, Bianco R, Fusco A, D'Angelo D (2015) MiR-199a-5p and miR-375 affect colon cancer cell sensitivity to cetuximab by targeting PHLPP1. Expert Opin Ther Targets 19(8):1017–1026

    Article  CAS  PubMed  Google Scholar 

  69. Pickl JM, Tichy D, Kuryshev VY, Tolstov Y, Falkenstein M, Schüler J, Reidenbach D, Hotz-Wagenblatt A, Kristiansen G, Roth W et al (2016) Ago-RIP-Seq identifies polycomb repressive complex I member CBX7 as a major target of miR-375 in prostate cancer progression. Oncotarget. doi:10.18632/oncotarget.10729

    PubMed  PubMed Central  Google Scholar 

  70. Scala S, Portella G, Fedele M, Chiappetta G, Fusco A (1997) Adenovirus-mediated suppression of HMGI(Y) protein synthesis as potential therapy of human malignant neoplasias. Proc Natl Acad Sci USA, p 4256–4261

  71. Duffaud F, Maki RG, Jones RL (2016) Treatment of advanced soft tissue sarcoma: efficacy and safety of trabectedin, a multitarget agent, and update on other systemic therapeutic options. Expert Rev Clin Pharmacol. doi:10.1586/17512433.2016.1152179

    PubMed  Google Scholar 

  72. Suh DH, Kim M, Kim HJ, Lee KH, Kim JW (2016) Major clinical research advances in gynecologic cancer in 2015. J Gynecol Oncol 27(6):e53

    Article  PubMed  PubMed Central  Google Scholar 

  73. Blum JL, Gonçalves A, Efrat N, Debled M, Conte P, Richards PD, Richards D, Lardelli P, Nieto A, Cullell-Young M et al. A phase II trial of trabectedin in triple-negative and HER2-overexpressing metastatic breast cancer. (2016) Breast Cancer Res Treat 155(2):295–302

  74. Belli C, Piemonti L, D'Incalci M, Zucchetti M, Porcu L, Cappio S, Doglioni C, Allavena P, Ceraulo D, Maggiora P et al (2016) Phase II trial of salvage therapy with trabectedin in metastatic pancreatic adenocarcinoma. Cancer Chemother Pharmacol 77(3):477–484

    Article  CAS  PubMed  Google Scholar 

  75. D'Angelo D, Borbone E, Palmieri D, Uboldi S, Esposito F, Frapolli R, Pacelli R, D'Incalci M, Fusco A (2013) The impairment of the high mobility group A (HMGA) protein function contributes to the anticancer activity of trabectedin. Eur J Cancer 49(5):1142–1151

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This study has been supported by grants from PNR-CNR Aging Program 2012–2014, CNR Flagship Projects (Epigenomics-EPIGEN, PON 01-02782 (Nuove strategie nanotecnologiche per la messa a punto di farmaci e presidi diagnostici diretti verso cellule cancerose circolanti), Associazione Italiana per la Ricerca sul Cancro (AIRC IG 11477).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Daniela D’Angelo or Alfredo Fusco.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

D’Angelo, D., Mussnich, P., Arra, C. et al. Critical role of HMGA proteins in cancer cell chemoresistance. J Mol Med 95, 353–360 (2017). https://doi.org/10.1007/s00109-017-1520-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-017-1520-x

Keywords

Navigation