Skip to main content
Log in

Resveratrol inhibits renal interstitial fibrosis in diabetic nephropathy by regulating AMPK/NOX4/ROS pathway

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Renal interstitial fibrosis is a major pathologic feature of diabetic nephropathy, while the pathogenesis and therapeutic interventions of diabetic renal interstitial fibrosis are not well established. In this study, we first demonstrated that high glucose could induce renal fibroblast (NRK-49F) cell proliferation and activation to myofibroblasts, accompanied by a significant increase in the intracellular levels of reactive oxygen species (ROS) derived from nicotinamide adenine dinucleotide phosphate oxidase 4 (NOX4). ROS-mediated ERK1/2 activation was found to play a crucial role in high glucose-induced fibroblast proliferation and activation. Resveratrol, like the NOX4-targeting small interfering RNA (siRNA), markedly inhibited high glucose-induced fibroblast proliferation and activation by reducing NOX4-derived ROS production. It was then revealed that the increase in the expression of NOX4 induced by high glucose was due to the inactivation of AMP-activated protein kinase (AMPK), which could be reversed by resveratrol. Further in vivo investigation demonstrated that resveratrol treatment significantly attenuated renal fibrosis in db/db mice, accompanied by an evident increase in phospho-AMPK and decrease in NOX4. In summary, our results suggest that high glucose can directly promote renal fibroblasts proliferation and activation in a ROS-dependent manner, and resveratrol is a potential therapeutic agent against diabetic renal fibrosis via regulation of AMPK/NOX4/ROS signaling.

Key message

  • Resveratrol inhibits high glucose-induced NRK cell activation by decreasing NOX4-derived ROS.

  • Resveratrol inhibits high glucose-induced NOX4 expression in NRK cells via activation of AMPK.

  • ROS-activated ERK1/2 signaling is involved in high glucose-induced NRK cell activation.

  • Resveratrol attenuated renal fibrosis in db/db mice via regulation of AMPK/NOX4/ROS signaling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Strutz F, Zeisberg M (2006) Renal fibroblasts and myofibroblasts in chronic kidney disease. J Am Soc Nephrol 17(11):2992–2998

    Article  CAS  PubMed  Google Scholar 

  2. Grande MT, Lopez-Novoa JM (2009) Fibroblast activation and myofibroblast generation in obstructive nephropathy. Nat Rev Nephrol 5(6):319–328

    Article  CAS  PubMed  Google Scholar 

  3. LeBleu VS, Taduri G, O’Connell J, Teng Y, Cooke VG, Woda C, Sugimoto H, Kalluri R (2013) Origin and function of myofibroblasts in kidney fibrosis. Nat Med 19(8):1047–1053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Asada N, Takase M, Nakamura J, Oguchi A, Asada M, Suzuki N, Yamamura K, Nagoshi N, Shibata S, Rao TN et al (2011) Dysfunction of fibroblasts of extrarenal origin underlies renal fibrosis and renal anemia in mice. J Clin Invest 121(10):3981–3990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Manickam N, Patel M, Griendling KK, Gorin Y, Barnes JL (2014) RhoA/Rho kinase mediates TGF-beta1-induced kidney myofibroblast activation through Poldip2/Nox4-derived reactive oxygen species. Am J Physiol Renal Physiol 307(2):F159–F171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bondi CD, Manickam N, Lee DY, Block K, Gorin Y, Abboud HE, Barnes JL (2010) NAD(P)H oxidase mediates TGF-beta1-induced activation of kidney myofibroblasts. J Am Soc Nephrol 21(1):93–102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Cheng TH, Cheng PY, Shih NL, Chen IB, Wang DL, Chen JJ (2003) Involvement of reactive oxygen species in angiotensin II-induced endothelin-1 gene expression in rat cardiac fibroblasts. J Am Coll Cardiol 42(10):1845–1854

    Article  CAS  PubMed  Google Scholar 

  8. He T, Guan X, Wang S, Xiao T, Yang K, Xu X, Wang J, Zhao J (2015) Resveratrol prevents high glucose-induced epithelial-mesenchymal transition in renal tubular epithelial cells by inhibiting NADPH oxidase/ROS/ERK pathway. Mol Cell Endocrinol 402:13–20

    Article  CAS  PubMed  Google Scholar 

  9. Gorin Y, Block K, Hernandez J, Bhandari B, Wagner B, Barnes JL, Abboud HE (2005) Nox4 NAD(P)H oxidase mediates hypertrophy and fibronectin expression in the diabetic kidney. J Biol Chem 280(47):39616–39626

    Article  CAS  PubMed  Google Scholar 

  10. Eid AA, Ford BM, Bhandary B, de Cassia Cavaglieri R, Block K, Barnes JL, Gorin Y, Choudhury GG, Abboud HE (2013) Mammalian target of rapamycin regulates Nox4-mediated podocyte depletion in diabetic renal injury. Diabetes 62(8):2935–2947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Holterman CE, Read NC, Kennedy CR (2015) Nox and renal disease. Clin Sci (Lond) 128(8):465–481

    Article  CAS  Google Scholar 

  12. Li JM, Shah AM (2003) ROS generation by nonphagocytic NADPH oxidase: potential relevance in diabetic nephropathy. J Am Soc Nephrol 14(8 Suppl 3):S221–S226

    Article  CAS  PubMed  Google Scholar 

  13. Kim WH, Lee JW, Suh YH, Lee HJ, Lee SH, Oh YK, Gao B, Jung MH (2007) AICAR potentiates ROS production induced by chronic high glucose: roles of AMPK in pancreatic beta-cell apoptosis. Cell Signal 19(4):791–805

    Article  CAS  PubMed  Google Scholar 

  14. Lee YS, Kim WS, Kim KH, Yoon MJ, Cho HJ, Shen Y, Ye JM, Lee CH, Oh WK, Kim CT et al (2006) Berberine, a natural plant product, activates AMP-activated protein kinase with beneficial metabolic effects in diabetic and insulin-resistant states. Diabetes 55(8):2256–2264

    Article  CAS  PubMed  Google Scholar 

  15. Motoshima H, Goldstein BJ, Igata M, Araki E (2006) AMPK and cell proliferation—AMPK as a therapeutic target for atherosclerosis and cancer. J Physiol 574(Pt 1):63–71

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Yamauchi T, Kamon J, Minokoshi Y, Ito Y, Waki H, Uchida S, Yamashita S, Noda M, Kita S, Ueki K et al (2002) Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase. Nat Med 8(11):1288–1295

    Article  CAS  PubMed  Google Scholar 

  17. Eid AA, Ford BM, Block K, Kasinath BS, Gorin Y, Ghosh-Choudhury G, Barnes JL, Abboud HE (2010) AMP-activated protein kinase (AMPK) negatively regulates Nox4-dependent activation of p53 and epithelial cell apoptosis in diabetes. J Biol Chem 285(48):37503–37512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lee JH, Kim JH, Kim JS, Chang JW, Kim SB, Park JS, Lee SK (2013) AMP-activated protein kinase inhibits TGF-beta-, angiotensin II-, aldosterone-, high glucose-, and albumin-induced epithelial-mesenchymal transition. Am J Physiol Renal Physiol 304(6):F686–F697

    Article  CAS  PubMed  Google Scholar 

  19. Luo X, Deng L, Lamsal LP, Xu W, Xiang C, Cheng L (2015) AMP-activated protein kinase alleviates extracellular matrix accumulation in high glucose-induced renal fibroblasts through mTOR signaling pathway. Cell Physiol Biochem 35(1):191–200

    Article  CAS  PubMed  Google Scholar 

  20. Dugan LL, You YH, Ali SS, Diamond-Stanic M, Miyamoto S, DeCleves AE, Andreyev A, Quach T, Ly S, Shekhtman G et al (2013) AMPK dysregulation promotes diabetes-related reduction of superoxide and mitochondrial function. J Clin Invest 123(11):4888–4899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Papadimitriou A, Peixoto EB, Silva KC, Lopes de Faria JM, Lopes de Faria JB (2014) Increase in AMPK brought about by cocoa is renoprotective in experimental diabetes mellitus by reducing NOX4/TGFbeta-1 signaling. J Nutr Biochem 25(7):773–784

    Article  CAS  PubMed  Google Scholar 

  22. Sharma S, Anjaneyulu M, Kulkarni SK, Chopra K (2006) Resveratrol, a polyphenolic phytoalexin, attenuates diabetic nephropathy in rats. Pharmacology 76(2):69–75

    Article  CAS  PubMed  Google Scholar 

  23. Palsamy P, Subramanian S (2011) Resveratrol protects diabetic kidney by attenuating hyperglycemia-mediated oxidative stress and renal inflammatory cytokines via Nrf2-Keap1 signaling. Biochim Biophys Acta 1812(7):719–731

    Article  CAS  PubMed  Google Scholar 

  24. Hawley SA, Ross FA, Chevtzoff C, Green KA, Evans A, Fogarty S, Towler MC, Brown LJ, Ogunbayo OA, Evans AM et al (2010) Use of cells expressing gamma subunit variants to identify diverse mechanisms of AMPK activation. Cell Metab 11(6):554–565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kim MY, Lim JH, Youn HH, Hong YA, Yang KS, Park HS, Chung S, Ko SH, Shin SJ, Choi BS et al (2013) Resveratrol prevents renal lipotoxicity and inhibits mesangial cell glucotoxicity in a manner dependent on the AMPK-SIRT1-PGC1alpha axis in db/db mice. Diabetologia 56(1):204–217

    Article  CAS  PubMed  Google Scholar 

  26. Guan X, Nie L, He T, Yang K, Xiao T, Wang S, Huang Y, Zhang J, Wang J, Sharma K et al (2014) Klotho suppresses renal tubulo-interstitial fibrosis by controlling basic fibroblast growth factor-2 signalling. J Pathol 234(4):560–572

    Article  CAS  PubMed  Google Scholar 

  27. Wang SN, LaPage J, Hirschberg R (2000) Role of glomerular ultrafiltration of growth factors in progressive interstitial fibrosis in diabetic nephropathy. Kidney Int 57(3):1002–1014

    Article  CAS  PubMed  Google Scholar 

  28. Picard N, Baum O, Vogetseder A, Kaissling B, Le Hir M (2008) Origin of renal myofibroblasts in the model of unilateral ureter obstruction in the rat. Histochem Cell Biol 130(1):141–155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Faulkner JL, Szcykalski LM, Springer F, Barnes JL (2005) Origin of interstitial fibroblasts in an accelerated model of angiotensin II-induced renal fibrosis. Am J Pathol 167(5):1193–1205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Le A, Lane AN, Hamaker M, Bose S, Gouw A, Barbi J, Tsukamoto T, Rojas CJ, Slusher BS, Zhang H et al (2012) Glucose-independent glutamine metabolism via TCA cycling for proliferation and survival in B cells. Cell Metab 15(1):110–121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Yuan P, Xue H, Zhou L, Qu L, Li C, Wang Z, Ni J, Yu C, Yao T, Huang Y et al (2011) Rescue of mesangial cells from high glucose-induced over-proliferation and extracellular matrix secretion by hydrogen sulfide. Nephrol Dial Transplant 26(7):2119–2126

    Article  CAS  PubMed  Google Scholar 

  32. Lee YJ, Han HJ (2010) Troglitazone ameliorates high glucose-induced EMT and dysfunction of SGLTs through PI3K/Akt, GSK-3beta, Snail1, and beta-catenin in renal proximal tubule cells. Am J Physiol Renal Physiol 298(5):F1263–F1275

    Article  CAS  PubMed  Google Scholar 

  33. Liu Y (2011) Cellular and molecular mechanisms of renal fibrosis. Nat Rev Nephrol 7(12):684–696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kobayashi M, Sugiyama H, Wang DH, Toda N, Maeshima Y, Yamasaki Y, Masuoka N, Yamada M, Kira S, Makino H (2005) Catalase deficiency renders remnant kidneys more susceptible to oxidant tissue injury and renal fibrosis in mice. Kidney Int 68(3):1018–1031

    Article  CAS  PubMed  Google Scholar 

  35. Sachse A, Wolf G (2007) Angiotensin II-induced reactive oxygen species and the kidney. J Am Soc Nephrol 18(9):2439–2446

    Article  CAS  PubMed  Google Scholar 

  36. Hecker L, Vittal R, Jones T, Jagirdar R, Luckhardt TR, Horowitz JC, Pennathur S, Martinez FJ, Thannickal VJ (2009) NADPH oxidase-4 mediates myofibroblast activation and fibrogenic responses to lung injury. Nat Med 15(9):1077–1081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ha H, Lee HB (2005) Reactive oxygen species amplify glucose signalling in renal cells cultured under high glucose and in diabetic kidney. Nephrology (Carlton) 10 Suppl:S7–S10

    Article  Google Scholar 

  38. Susztak K, Raff AC, Schiffer M, Bottinger EP (2006) Glucose-induced reactive oxygen species cause apoptosis of podocytes and podocyte depletion at the onset of diabetic nephropathy. Diabetes 55(1):225–233

    Article  CAS  PubMed  Google Scholar 

  39. Asaba K, Tojo A, Onozato ML, Goto A, Quinn MT, Fujita T, Wilcox CS (2005) Effects of NADPH oxidase inhibitor in diabetic nephropathy. Kidney Int 67(5):1890–1898

    Article  CAS  PubMed  Google Scholar 

  40. Spanier G, Xu H, Xia N, Tobias S, Deng S, Wojnowski L, Forstermann U, Li H (2009) Resveratrol reduces endothelial oxidative stress by modulating the gene expression of superoxide dismutase 1 (SOD1), glutathione peroxidase 1 (GPx1) and NADPH oxidase subunit (Nox4). J Physiol Pharmacol 60(Suppl 4):111–116

    PubMed  Google Scholar 

  41. Sedeek M, Nasrallah R, Touyz RM, Hebert RL (2013) NADPH oxidases, reactive oxygen species, and the kidney: friend and foe. J Am Soc Nephrol 24(10):1512–1518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Sedeek M, Callera G, Montezano A, Gutsol A, Heitz F, Szyndralewiez C, Page P, Kennedy CR, Burns KD, Touyz RM et al (2010) Critical role of Nox4-based NADPH oxidase in glucose-induced oxidative stress in the kidney: implications in type 2 diabetic nephropathy. Am J Physiol Renal Physiol 299(6):F1348–F1358

    Article  CAS  PubMed  Google Scholar 

  43. Ambasta RK, Kumar P, Griendling KK, Schmidt HH, Busse R, Brandes RP (2004) Direct interaction of the novel Nox proteins with p22phox is required for the formation of a functionally active NADPH oxidase. J Biol Chem 279(44):45935–45941

    Article  CAS  PubMed  Google Scholar 

  44. Sareila O, Kelkka T, Pizzolla A, Hultqvist M, Holmdahl R (2011) NOX2 complex-derived ROS as immune regulators. Antioxid Redox Signal 15:2197–2208

    Article  CAS  PubMed  Google Scholar 

  45. Liang J, Tian S, Han J, Xiong P (2014) Resveratrol as a therapeutic agent for renal fibrosis induced by unilateral ureteral obstruction. Ren Fail 36(2):285–291

    Article  CAS  PubMed  Google Scholar 

  46. Kitada M, Kume S, Imaizumi N, Koya D (2011) Resveratrol improves oxidative stress and protects against diabetic nephropathy through normalization of Mn-SOD dysfunction in AMPK/SIRT1-independent pathway. Diabetes 60(2):634–643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ding DF, You N, Wu XM, Xu JR, Hu AP, Ye XL, Zhu Q, Jiang XQ, Miao H, Liu C et al (2010) Resveratrol attenuates renal hypertrophy in early-stage diabetes by activating AMPK. Am J Nephrol 31(4):363–374

    Article  CAS  PubMed  Google Scholar 

  48. McCarty MF, Barroso-Aranda J, Contreras F (2009) AMP-activated kinase may suppress NADPH oxidase activation in vascular tissues. Med Hypotheses 72(4):468–470

    Article  CAS  PubMed  Google Scholar 

  49. Schuhmacher S, Foretz M, Knorr M, Jansen T, Hortmann M, Wenzel P, Oelze M, Kleschyov AL, Daiber A, Keaney JF et al (2011) alpha1AMP-activated protein kinase preserves endothelial function during chronic angiotensin II treatment by limiting Nox2 upregulation. Arterioscler Thromb Vasc Biol 31(3):560–566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This study was supported by research grants from the National Natural Science Foundation of China (nos. 81270290, 81500561, and 81500567) and the project for overseas student from Ministry of Human Resources and Social Security of the People’s Republic of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinghong Zhao.

Ethics declarations

Conflict of interest

The authors declare no conflict of interests related to this study.

Additional information

Ting He and Jiachuan Xiong contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, T., Xiong, J., Nie, L. et al. Resveratrol inhibits renal interstitial fibrosis in diabetic nephropathy by regulating AMPK/NOX4/ROS pathway. J Mol Med 94, 1359–1371 (2016). https://doi.org/10.1007/s00109-016-1451-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-016-1451-y

Keywords

Navigation